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and can yield verbalizable knowledge, which can be acquired 
within a single trial (Eichenbaum & Cohen, 2001; Graf & 
Schacter, 1985; Cohen & Squire, 1980). Within the mul-
tiple forms of memory that are not available to awareness 
and do not require the medial temporal lobe (Reber, 2013), 
another well-characterized system is the procedural mem-
ory system, which relies on a fronto-striatal network and 
is characterized by gradual learning across multiple learn-
ing episodes, yielding non-verbalizable knowledge that is 
more easily expressed through performance (Squire & Zola-
Morgan, 1988; Squire, 1992, 2004, Reber & Squire, 1994).

The last few decades have moved beyond establishing 
the dissociable systems to examining ways that they may 
interact, since both are available in healthy adults. Many of 
these investigations have focused on competition (Poldrack 
& Packard, 2003), or possible collaboration (Freedberg 
et al., 2020) between systems during the learning process 
(encoding). What has not been examined as closely is 
whether and how information from both systems may con-
tribute to downstream processes such as decision making 
and response selection.

 Introduction

The last century has seen great strides in our understanding 
of human learning and memory. Compelling evidence indi-
cates that there are multiple dissociable memory systems 
with different characteristics and instantiated in different 
neural substrates (Gabrieli, 1998). One of the best-charac-
terized systems is referred to as the declarative memory sys-
tem, which requires intact medial temporal lobe structures 
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Abstract
Skilled behaviour in real-world contexts often relies on a combination of both declarative and procedural learning. How-
ever, precisely how declarative and procedural knowledge interact is not yet fully understood. Previous findings have 
shown that procedural and declarative learning may interact or compete at the systems level during encoding, consolida-
tion, and retrieval, but beyond this, it is not known whether declarative and procedural representations themselves interact. 
The goal of the current study is to investigate whether procedural and declarative knowledge can contribute simultaneously 
to categorization response selection behavior. We designed a stimulus set in which information learned by each system 
sometimes supports different responses, and created trials in the test phase that are designed to maximize such divergence. 
Participants were instructed to use a completely diagnostic, verbalizable, shape-based rule to categorize exemplars, receiv-
ing feedback after each trial. However, unbeknownst to participants, the categories also differed probabilistically in their 
color distributions. Participants used both color (learned procedurally) and shape (learned declaratively) to categorize 
exemplars, responding more quickly when both sources indicated the same category judgement, and more slowly when 
they conflicted. Debriefing confirmed that most participants were unaware of the color distributions. These results show 
simultaneous trial-level contributions from both declarative and procedural memory systems. Our findings represent a 
novel form of interaction between the two systems and have implications for domains beyond the laboratory, such as 
decision-making and classroom instruction.
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As we review below, much existing evidence suggests 
that information from only a single system at a time con-
tributes to these downstream processes. However, outside of 
the laboratory, we observe scenarios in which information 
from both systems appears to be used simultaneously. For 
example, when making diagnoses, medical experts seem to 
use a combination of both conditional reasoning based on 
declarative knowledge as well as probabilistic reasoning 
based on experience (Norman & Brooks, 1997). Similarly, 
professional musicians performing from memory seem to 
simultaneously draw on both a non-verbalizable represen-
tation of motor sequences as well as a verbalizable under-
standing of the structure, form, and meaning of a musical 
piece (Chaffin et al., 2009 cited in Reber, 2013). Increas-
ing evidence also suggests that procedural and declarative 
knowledge interact in language learning (Ullman, 2004, 
2016; Pili-Moss, 2022) and tool use (Roy & Park, 2010; 
Roy et al., 2015).

Procedural and declarative category learning

Like tool use and language learning, category learning—
learning that stimuli (such as objects) belong to categories, 
and that members of a category can often be treated in the 
same way —can be accomplished through either declarative 
or procedural learning, depending on task demands and cat-
egory structure. In a typical category-learning experiment, a 
participant is shown an example stimulus (e.g., a face, but-
terfly, or abstract shape) and asked to classify it into one of 
two categories, with feedback given after each trial. Evi-
dence of learning in these tasks is seen in increasingly accu-
rate responses as training progresses, and can be measured 
against chance responding, which is usually 50% accuracy 
given the two-alternative forced-choice format.

When the category structure is simple and verbaliz-
able (such as a unidimensional aka “Rule-Based” category 
boundary), declarative, verbally-mediated methods for 
learning are most efficient, and tend to be used more by 
participants. Declarative/verbalizable category learning has 
been mapped to the declarative or explicit long-term mem-
ory system in the human brain (Ashby & O’Brien, 2005), 
which depends on structures in the medial temporal lobe 
(MTL), including the hippocampus (Gabrieli, 1998 inter 
alia).

However, when the category structure is complex (such 
as in multidimensional or “Information-Integration” cat-
egories), or the relationship between items and category 
membership is probabilistic, then declarative strategies are 
inefficient. Under such circumstances, successful learning 
usually occurs through a non-declarative category learning 
mechanism. Specifically, one type of non-declarative long-
term memory, sometimes referred to as “skill and habit 

learning” or “procedural learning”, depends on the stria-
tum of the basal ganglia and can be used to learn complex 
or probabilistic categories (Foerde et al., 2007; Knowlton 
et al., 1994, 1996a, b; Ashby & O’Brien, 2005; Ashby & 
Ell, 2001; Ashby & Ennis, 2006; Seger & Cincotta, 2006; 
Ashby et al., 1998; Foerde, 2018; Foerde & Poldrack, 2008; 
Knowlton et al., 1996a; Salmon & Butters, 1995; Seger, 
2006). Importantly, the term “procedural” in the cognitive 
neuroscience long-term memory taxonomy (see e.g. Squire 
& Zola-Morgan, 1996, Fig. 1) is not used to mean “knowl-
edge of procedures” or to mean only stimulus-response 
associations or condition-action rules, as it may be used 
in other areas of cognitive psychology. Specifically, this 
usage of “procedural” refers to skill and habit learning that 
depends on the basal ganglia and leads to abstract, long-
term knowledge (Reber, 1989; Seger, 1994). Importantly, 
procedural learning is not limited to motor skill acquisition, 
but also includes cognitive skill acquisition (Poldrack et al., 
1999; VanLehn, 1996; Wan et al., 2012).

Existing research on interactions between memory 
systems in category learning

Existing research on interactions between memory systems 
in category learning has emphasized competition, either at 
encoding or retrieval. Inspired by findings in rodent mod-
els that lesioning one system seemed to improve function 
of the other system (McDonald et al., 2004; Mcdonald & 
Hong, 2013; McDonald & White, 1995), early models of 
interaction between declarative and procedural memory 
in humans emphasized competition for resources during 
encoding (learning) 1. Supporting this view, Poldrack et al. 
(2001) examined fMRI data from participants performing 
either a probabilistic classification task or a paired associate 
(declarative memory) task with the same stimuli and found 
an inverse relationship between MTL and striatal activity 
while participants performed a probabilistic classification 
task. They interpreted the results as evidence for competi-
tion between the systems during learning.

However, several subsequent studies suggested that 
simultaneous encoding—without interference or competi-
tion—could take place. For example, Foerde et al. (2006) 
found that activity in striatal regions was similar in both 
a single task condition and a dual-task condition (which 
is known to impair declarative category learning: Wal-
dron & Ashby, 2001), suggesting that procedural learning 
occurred regardless of declarative learning. Several studies 
by Crossley and colleagues have also demonstrated simulta-
neous encoding of category information by procedural and 

1   Competition during consolidation has been observed in sequence 
learning, but to our knowledge not in category learning. (Brown et 
al., 2009; Brown & Robertson, 2007; Galea et al., 2010)
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declarative systems (Ashby & Crossley, 2010; Crossley & 
Ashby, 2015; Turner et al., 2017).

To our knowledge, few studies have examined potential 
cooperation between declarative and procedural systems in 
categorization. One exception is an event-related fMRI study 
of probabilistic classification, by Dickerson et al. (2011), 
which found that both the medial temporal lobe and striatum 
showed a greater BOLD response to difficult cues than easy 
cues. Furthermore, they observed significant correlation in 
the time course of BOLD responses between the two areas, 
demonstrating functional connectivity. The authors interpret 
these results to mean that not only could both systems work 
in parallel without interfering with each other, but speculate 
that they may even collaborate to enhance overall learning2.

Without contradicting the possibility of simultaneous 
encoding, some studies suggested that competition between 
the systems might take place later, when knowledge is 
retrieved and applied (Poldrack, & Rodriguez, 2004), rather 
than at initial encoding. For example, rodents who had 
shifted from medial-temporal based representations to stria-
tal based representations to navigate a maze reinstated the 
previously-learned medial temporal-based representations 
when their striata were inactivated with lidocaine (Pack-
ard & McGaugh, 1996). Similarly, while the studies by 
Crossley and colleagues mentioned above support the idea 
of simultaneous encoding, they also supported the idea of 
competition at retrieval or application.

Finally, some evidence suggests that if provided with an 
explicit cue, participants can flexibly switch between rule-
based and information-integration categorization strategies 
on different trials within the same session (Turner et al., 
2017). This finding demonstrates that coordination between 
the two systems is possible and may be managed by a third, 
coordinating system or mechanism3. However, intentional 
trial-by-trial switching appears to be rare or difficult in the 
absence of explicit cueing (Erickson, 2008; Turner et al., 
2017).

Evidence for possible within-trial interaction

To our knowledge, no study has been specifically designed to 
test whether information from both systems simultaneously 

2   Cooperation between systems in the form of increased functional 
connectivity has also been observed for non-categorization tasks, 
including sequence learning (Albouy et al., 2013; Freedberg et al., 
2020).

3   The idea of a “third party” mediating the balance of function 
between procedural and declarative memory has been introduced 
in other discussions of interactions between procedural and declara-
tive memory, but not in the context of category learning specifically. 
(Cabeza & Moscovitch, 2013; McDonald et al., 2004; Mcdonald & 
Hong, 2013)

contributes to a response within a single trial. However, 
some studies have hinted at this possibility.

For example, Allen and Brooks (1991) observed that 
even though participants were given a perfectly predic-
tive classification rule, their responses on a transfer task 
were nevertheless affected by similarity to previously seen 
exemplars along irrelevant dimensions—almost as if the 
similarity information were “contaminating” the rule-based 
classification. However, this study was originally designed 
to contrast rule-based and exemplar-based learning, not 
declarative and procedural learning, so it is possible that 
that the generalization based on exemplars could have been 
mediated by either procedural or declarative mechanisms4. 
Similarly, Schoenlein and Schloss (2022) trained partici-
pants to classify stimuli based on a completely diagnostic 
shape difference, but using a cool-biased color distribution 
for one category and a warm-biased color difference for 
the other category. Participants were able to use the shape 
rule effectively, and in a set of debriefing questions, they 
did not report color as a feature used to classify the stimuli. 
However, after training, participants were asked to rate how 
associated different colors were with each category (using 
the category names) on a continuous scale labeled from “not 
at all” to “very much.” The participants rated cool colors 
as more associated with the cool-biased category and warm 
colors as more associated with the warm-biased category, 
even generalizing to warm and cool colors that had not been 
included in the training set. These findings demonstrate that 
participants were able to form a color-category association 
with out any explicit instructions or cues to attend to color, 
even while they were simultaneously using a fully diagnos-
tic non-color rule. However, since the color-category asso-
ciations were assessed outside of the categorization task, 
this study could not test whether this probabilistic color 
information directly influenced category decisions during 
online classification performance. In addition, the degree 
to which the color-category association was available to 
declarative and explicit processes was unclear: participants 
did not report use of color to categorize stimuli in a verbal 

4   Allen and Brooks hypothesized that similarity to training items 
would affect test responses through the mechanism of episodic 
retrieval, i.e. explicitly remembering specific training phase exem-
plars and comparing the current test phase stimulus to them. Because 
of this theoretical framing, the feedback given to participants in the 
training phase of the Allen & Brooks study was not [optimized] for 
implicit learning; the feedback was somewhat indirect (an image 
showing the “animals” either “digging” or “building” their nests, 
thus revealing their membership in either the “digger” or “builder” 
category). In the current study, simple “correct” or “incorrect” feed-
back is given immediately after each trial, and a consistent response-
stimulus-interval separates trials. Another important difference is that 
in the test phase of Allen & Brooks, most of the test items (32/40, 
80%) were repeated from training, whereas in the current study, no 
training items are repeated in the test phase.
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rule can be learned based on a single verbal presentation. 
For example, Category A is defined by one combination of 
features, and Category B is defined by another set.

For the procedural system, our training items follow a 
distribution of colors that differs probabilistically between 
the two categories (as defined by the feature combination 
rule). As in the Schoenlien and Schloss (2022) study, one 
category is presented in a warm-biased color distribution, 
and the other in a cool-biased color distribution (for exam-
ple, training exemplars from Category A might appear in 
cool colors more often than in warm colors, and vice versa). 
Importantly, the relationship between colors and category is 
probabilistic: exemplars from each category appear in each 
of the possible colors, but for one category, the probability 
of an exemplar appearing as a warm color will be low (and 
vice versa) (see Fig. 1). If a color-category association is to 
be learned, it must be learned gradually, with feedback, via 
the procedural category learning system. The structure and 
task demands of probabilistic color-category association 
learning are very much like the probabilistic classification 
task, which has been reliably demonstrated to use the stria-
tal procedural system (Foerde & Shohamy, 2011b; Knowl-
ton et al., 1994; Knowlton et al., 1996a, b; Shohamy et al., 
2004; Squire et al., 1994).

The experiment presented here includes a training phase 
and a test phase. The biased color distributions are used in 
the training phase to establish a color-category association. 
However, a non-biased color distribution is used in the test 
phase, so that many of the trials present a color-category 
combination that violates the expected color-category asso-
ciation established in the training phase (for example, if 
Category A was presented as warm-biased in the training 
phase, then the violation/incongruent trials in the test phase 
would include Category A stimuli presented in cool colors).

We also include measures of whether the color-category 
knowledge is available to awareness or not. If it is learned 
gradually, based on feedback, and without awareness, we 
may infer that this learning is mediated by the striatal pro-
cedural system. During the test phase, if we see a difference 
between trials in which procedural and declarative learning 
point to the same response (congruent) compared to those 
trials in which they point to different responses (incongru-
ent), we will conclude that both sources of information con-
tribute to response selection within a given trial. If we do not 
observe such a difference, we will conclude that information 
from both systems is not used simultaneously in response 
selection, at least in the current paradigm.

We initially explored these questions in a preliminary 
study that was presented as conference proceedings paper 
(Kalra et al., 2024). The current study improves on the origi-
nal by including a post-test for color-category knowledge, 
as well as pre-registration of the analysis plan. The findings 

debrief, but were able to rate the association between each 
color and category.

More closely, Batterink and colleagues (Berger & Bat-
terink, 2024; Batterink et al., 2014) taught participants an 
explicit rule (near/far objects) governing the use of novel 
artificial words in a word-object matching task. However, 
unbeknownst to the participants, the words also differed 
along a covert, second dimension (animate/inanimate 
objects). Participants showed greater reaction-time and 
lower accuracy on trials in which the word-animacy con-
tingency was violated, even though they were unaware of 
the article-animacy contingency. This finding shows that 
information acquired without awareness can affect inten-
tional response decisions that are made on the basis of a 
deterministic rule, delaying response times when the two 
forms of information conflict. These results suggest that 
both information that the participant is aware of, as well as 
information that the participant is not aware of, are interact-
ing at the point of response selection.

However, the results of the studies by Batterink et al. 
leave room for explanations other than an interaction of 
procedural and declarative knowledge. For example, in any 
case of language or language-like learning, there is the pos-
sibility that language-specific learning mechanisms may 
be engaged, rather than (or in addition to) domain-general 
learning mechanisms. Moreover, although Batterink et al.’s 
study included violation trials throughout, other aspects of 
the task, such as the cue-outcome probabilities, and in par-
ticular the mapping to a semantically available construct 
(animacy), differ from classic probabilistic classification 
tasks that are known to engage procedural learning mecha-
nisms (see e.g. Knowlton, 1994, 1996).

Inspired by, and borrowing elements from, the studies 
mentioned above, we have designed a paradigm specifically 
to examine the interaction of declarative and procedural 
learning mechanisms in visual category learning.

The current study

The goal of the current study is to observe whether proce-
dural and declarative knowledge contribute simultaneously 
to categorization response selection behavior, after initial 
encoding has occurred. It can be difficult to disentangle 
the contributions of multiple learning systems in a single 
task because the systems typically converge on common 
responses. Here, we have designed a stimulus set in which 
information learned by each system sometimes supports dif-
ferent responses, and we have created trials in the test phase 
that are designed to maximize such divergence.

For the declarative system, we provide—explicitly, ver-
bally, and with examples—a deterministic, verbalizable 
category rule based on feature combinations. In theory, this 
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years; 50% Male, 50% Female by self-report). Participants 
were compensated US$4.50 for completing the task. To 
encourage engagement with the task, participants were told 
that bonuses were possible for performance over 90% (the 
bonus given was $0.50). An accuracy performance criterion 
(70% accuracy on training and test phases) was instituted 
to detect and eliminate online participants who did not fol-
low directions; participants were told that 70% accuracy 
was necessary to “win” the game, and mean accuracy was 
displayed on screen during the training phase. Of the 235 
participants who completed all parts of the study, 204 met 
the minimum performance criterion and were included in 
further analyses.

of the current study are consistent with the findings of the 
original study, so the current study may be considered a suc-
cessful pre-registered replication (and expansion) of that 
study.

Methods

Participants

A total of 235 participants were recruited using the Connect 
Cloud Research platform (Hartman et al., 2023) following 
an approved ethics protocol (ages 19–71; mean age 36.69 

Category A
Odd # eyes + round mouth OR
Even # of eyes + square mouth

Category B
Odd # eyes + square mouth OR

Even # eyes + round mouth

Incongruent

Congruent

Incongruent

Congruent

Fig. 1  Experiment design. Participants were told the complex disjunc-
tive eye/mouth rule for classifying alien stimuli. In the training phase, 
items for each category were presented across a biased color distribu-
tion, either cool-biased (Category A) or warm-biased (Category B), 

creating a probabilistic color-category association. In the test phase, 
an even distribution of congruent and incongruent items from each 
category were presented
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330 (where 0 corresponds to red and 180 to cyan). Warm col-
ors were defined as those within 90 degrees (+/-) of 0; cool 
colors were defined as those greater than 90 degrees (+/-) 
from 0. For each hue angle position, saturation (chroma) 
was adjusted to minimize differences in saturation across 
hue angles and between warm and cool color groups. Given 
the inherent asymmetry of the visual color space, it was not 
possible to equalize luminance (brightness) between warm 
and cool colors; cool colors were systematically lower in 
luminance than warm colors (see Supplemental Figure 1). 
The COLORMATH package for Python (Taylor, 2018) 
was used to select colors in CIELChuv color space (CIE, 
1986) and to calculate the distances between colors in that 
color space (delta e). Degree of warmness and differences 
in warmness between colors were calculated based on hue 
angle and distance from 0. LHC and RGB values can be 
found in Table 1 of the Supplemental Materials. Note that 
because participants completed the tasks on their own com-
puters via the online platform, actual displayed colors may 
have varied from our original specifications. However, the 
relative differences between colors would likely have been 
largely preserved.

Training phase color distributions  Unbeknownst to partici-
pants, stimuli in the training condition followed biased color 
distributions. Two color distributions were created: one 
warm-biased and one cool-biased, and each was assigned 
to a category in counterbalanced fashion (i.e., for half of 
participants, Category A followed the warm-biased distribu-
tion and Category B the cool-biased distribution, and vice 
versa for the other half; see Fig. 1). Each color distribution 
included a total of 92 alien stimuli distributed across all 12 
hue values. Each distribution contained 74 congruent (e.g., 
warm colors in the warm-biased category) alien stimuli and 
18 incongruent (e.g., cool colors in the warm-biased cat-
egory) alien stimuli. Within each category, each color was 
also distributed evenly across subcategory and number of 
eyes. The distribution of non-diagnostic features (nose type 
and ears/no ears) was also matched between the two cat-
egories. This balancing of color across subcategory, number 
of eyes, and non-diagnostic features was done to reduce or 
eliminate the possible formation of color-feature associa-
tions other than the intended color-category association.

Procedure

Overview

Participants completed the task on their personal comput-
ers (option to complete the task on tablet or phone was dis-
abled). After giving informed consent, participants viewed 
an explanation of the explicit rule on a screen with visual 

This protocol for this study, including performance cri-
teria for exclusion, was preregistered5. The preregistered 
protocol can be found at https://osf.io/atj5q.

Materials

Alien Stimuli

“Alien” images were created using custom code and 
Python’s PIL package to combine geometric figures (ovals, 
rectangles, etc.). Each alien stimulus consisted of a large 
oval with some configuration of the following features: 
number of eyes (1–4), mouth type (round or angular), nose 
type (round or angular), ears (present or absent). All thirty-
two possible combinations of these features were gener-
ated and used in the experiment (see Fig. 1A for example 
images).

Categorization features and explicit rule  Alien stimuli were 
divided into two categories based on a disjunctive (exclu-
sive “or”/XOR) rule over the eye and mouth dimensions 
(Fig.  1). Stimuli in Category A had either a round mouth 
and odd number of eyes OR a square mouth and even num-
ber of eyes. Conversely, stimuli in Category B had either a 
square mouth and odd number of eyes OR a round mouth 
and even number of eyes. Thus, each category included 
16 possible configurations of features (including both the 
diagnostic [eyes, mouth] and nondiagnostic [nose and ears] 
feature dimensions). Because of the disjunctive nature of 
the rule, each category could be further divided into two 
subcategories based on which part of the rule applied (e.g., 
for each category, odd number of eyes and even number of 
eyes belonged to different subcategories). The complex dis-
junctive rule was chosen for two reasons. First, a disjunctive 
rule is difficult or impossible to learn from feedback alone 
(see e.g., Shepard et al., 1961; Feldman, 2000, 2003), so any 
use of the eyes/mouth rule could be assumed to be via the 
declarative system. Second, the complexity of the complex 
disjunctive rule requires considerable working memory and 
attention resource allocation, so it was unlikely that partici-
pants could attend to and become aware of the biased color 
distributions.

Color selection and distribution  Each configuration of fea-
tures was then generated in a variety of colors (Fig. 1). Col-
ors were divided into warm and cool colors based on their 
hue angle. Even hue-angle spacing was used to choose hue 
angles of 0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 

5   Note that the current, preregistered study is a replication of a previ-
ous, non-preregistered study. The results reported here are consistent 
with the results of the previous study, which can be found in Kalra 
et al.,2024.

1 3

  146   Page 6 of 18

https://osf.io/atj5q


Psychological Research          (2025) 89:146 

on the screen. Feedback was based solely on the explicitly 
instructed mouth/eyes rule. Category-ship combination was 
counterbalanced across participants, so for half the partici-
pants Category A stimuli used the rocket and Category B 
stimuli used the saucer, and vice versa for the other half. To 
encourage accurate performance, incorrect responses were 
followed by a 3-second delay with countdown, serving as a 
penalty for errors. The task screen also included a “power 
bar” showing cumulative accuracy; in the pre-task instruc-
tions, participants were told that cumulative accuracy above 
70% was necessary “to win the game.”

Although participants were incentivized with regard to 
accuracy, they were not given any instructions regarding 
speed of response (i.e., they were not specifically instructed 
to respond as quickly as possible while being accurate). In 
addition, there was no response deadline; stimuli persisted 
on each trial until terminated by participant response. One 
reason we chose not to impose a response deadline on par-
ticipants was to decrease stress, which is known to impair 
performance on complex cognitive tasks (e.g., Sussman 
& Sekuler, 2022, Caviola et al., 2017). We also assumed 
that participants were internally motivated to complete 
their participation as quickly as possible; this is why the 
3-second delay was thought to be an effective deterrent 
for attempting to speed through the task without regard 
to accuracy. While a few highly accurate participants had 
long average responses times, across participants we did 
not observe a reaction time-accuracy trade-off (Supple-
mental Figure 5).

An inter-trial interval of 500ms separated the feedback 
screen and the subsequent alien stimulus presentation; dur-
ing the ITI, only the background elements of the trial (such 
as the ships) appeared. Stimuli were presented in 4 blocks 
of 44 trials (plus one initial practice block of 12 trials); each 
block was roughly even in terms of category, color, sub-
category, and non-diagnostic features. Stimulus order was 
pseudorandom such that no more than 3 trials from the same 
category appeared consecutively and consecutive same-
color or same-eye-number trials were similarly limited. 

examples. Participants then progressed through the train-
ing phase, followed by the test phase. Finally, participants 
answered demographic and debriefing questions and com-
pleted a brief test of color-blindness using Ishihara plates. 
All instructions were provided in text form on the computer 
screen. Consent, demographic, debriefing, and colorblind-
ness items were administered through Qualtrics (Qualtrics 
Software Company, 2024 Provo UT). Training and test phase 
categorization tasks were programmed in PsychoPy (Pierce 
et al., 2019), uploaded to the Pavlovia online experiment 
platform (www.pavlovia.org), and embedded in Qualtrics.

Training phase

Participants were given a cover story in which they were 
asked to match alien stimuli to their appropriate vehicles—
aliens of one category used rockets, while the other category 
used saucers (no verbal labels were given for vehicle type). 
Participants were instructed on the explicit rule through 
slides that explained the rule (e.g. “Group 16 aliens have 
square mouths and an odd number of eyes”) and provided 
examples. The training task then began. A short practice 
block of 12 trials preceded the four training blocks. The 
stimuli in the practice block were sequenced to highlight 
the diagnostic features differentiating the categories (e.g., 
Category A stimulus with one eye followed by Category B 
stimulus with one eye). In all other ways practice trials were 
identical to training trials.

On each trial, participants were shown an alien stimu-
lus and two images of spaceships—one rocket, one saucer-
shaped. The rocket was always on the left side of the screen 
and the saucer on the right (see Fig. 2). Participants catego-
rized each alien stimulus by choosing rocket or saucer (left/
right) with a key press (f/j). Participants received feedback 
in the form of the words “correct” or “incorrect” displayed 

6   We attempted to limit verbal labeling of each category by refer-
ring to “Group 1” and “Group 2” in participant instructions. What the 
participants were told were Group 1 and Group 2 map to our internal 
division between Category A and Category B.

Explicit
Instructions

Training
Phase TestPhase

Debrief

Fig. 2  Schematic illustration of experiment procedure. Feedback was given during the training phase but not the test phase
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participants on the basis of their Ishihara plate responses or 
self-reports of colorblindness.

Strategy use and color awareness questions  Participants 
were also asked to complete the following open-ended 
questions:

1.	 Describe the rule you used to classify the aliens (in your 
own words, to the best of your ability).

2.	 Other than the rule you were instructed to use, did you 
use any strategy or rule of thumb to decide which aliens 
went with which ships? (if yes, please describe briefly if 
you can)

3.	 Did you notice anything about the colors of the aliens? 
If yes, please describe below.

4.	 Describe what (if anything) you noticed about the col-
ors of the aliens.

5.	 Did you use the colors to help the aliens find their ships? 
(yes/no)

As we were primarily interested in effects of implicit 
sensitivity to the color distribution on categorization perfor-
mance, responses to any of these questions that suggested a 
use of color to classify stimuli, or awareness of the biased 
color distributions resulted in the participant being labeled 
as “qualitatively aware.” As stated in our preregistered pro-
tocol, data from qualitatively aware participants were ana-
lyzed separately and not included in the main analysis of 
reaction time and accuracy in the test phase. Complete par-
ticipant responses and scoring can be found in the Supple-
mental Table 2.

Explicit color knowledge task  A final test for explicit 
knowledge of the color-category associations was given in 
the form of a classification task like the training task, but 
with the cover story that now the aliens were viewed from 
behind, i.e. their “facial features” were not visible, only 
colors. Participants completed 16 trials (one trial for each 
color plus 4 additional trials using peak colors), and then 
after each classification trial, to rate their confidence in their 
decision on a scale from 1 to 4 (1 = guessing, 4 = completely 
confident).

Analysis

Participant awareness

The analysis of interaction between declarative and procedural 
memory depends on an assumption that the color information 
was learned procedurally only, i.e. that participants did not 
develop declarative knowledge of the color-category associa-
tions. In order to satisfy this assumption, we used two methods 

Trial order within a block was fixed, but block order was 
random across participants.

Test phase

The format of the test phase trials was deliberately differ-
entiated from the training phase trials in order to probe for 
the effects of abstract category knowledge acquired by the 
procedural system rather than simply stimulus-response 
associations. Participants were shown two alien stimuli, one 
from Category A and one from Category B, and one ship, 
and were instructed to choose which alien corresponded to 
the presented ship. We manipulated the color congruency 
of both stimuli as a pair. Specifically, in half the trials, the 
colors of both stimuli were congruent with the training color 
distribution (e.g., A-warm/B-cool); in the other half of tri-
als, both stimuli were presented in incongruent colors. All 
stimuli presented were novel (i.e., not previously seen in 
the training task). However, note that the colors used in the 
test phase were the same as the colors used in the training 
phase. The stimuli were novel in the sense that particular 
combinations of facial features and colors had not been seen 
in the training phase, but both the facial configurations and 
the colors (taken separately), had been seen in the training 
phase. To avoid confusion with the training left/right config-
uration of the ships, the stimuli were stacked vertically and 
response keys were u/n (upper or lower). Participants were 
presented with a total of two blocks of 36 trials each (one 
saucer block, one rocket block). As in the training phase, 
there was no response deadline and participants were not 
explicitly instructed to respond quickly.

Pairs in the congruent and incongruent conditions were 
balanced for total shared features, shared diagnostic fea-
tures, shared non-diagnostic features, binned hue warmness 
difference, and mean distance between colors in color space 
(delta e).

Post-tests and survey questions

Colorblindness items  Participants were asked to type the 
numbers visible to them in a set of 5 Ishihara plates selected 
to probe for deficiencies in color vision. Before any exclu-
sions, about 1% of participants responded to the Ishihara 
plates in ways consistent with some form of colorblindness. 
However, performance for these participants was compa-
rable to that of other participants and the main RT difference 
between congruent and incongruent trials at test was similar 
in colorblind and non-colorblind participants. It is likely the 
case that colorblind participants were able to perceive the 
differences in color distributions based on brightness dif-
ferences even though they may not have been able to per-
ceive all hue differences. For this reason, we did not exclude 
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Next, participant outliers were identified in two ways. The first 
way, which was preregistered, was to drop participants who 
had unusually long or variable reaction times using cutoff 
values based on pilot data RT distributions (participant-mean 
RT > 4.5s or participant SD RT >5 s). However, it also occurred 
to us that a rational alternative would have been to use the cri-
terion of participant mean RTs +/- 3SDs from the group mean 
RTs; since this step was not preregistered, we analyzed the data 
both ways. The direction, significance, and effect size did not 
differ substantially, regardless of whether only the preregis-
tered steps were used for RT data cleaning or if additional or 
alternative steps were included.

Below, we report the results of the preregistered protocol, 
but results of the alternate analyses can be found in Appen-
dix A. After these exclusions, 173 participants were included 
in the reaction time analysis.

After data were cleaned as described above, each partici-
pant’s mean reaction time by condition (congruent/incon-
gruent) was calculated and a paired t-test was performed 
between conditions.

Stimuli, code for creating stimuli, analysis scripts, and 
de-identified data (including full survey responses) can be 
found at:

https://osf.io/cb3zu/.
This study was pre registered. The preregistered protocol 

can be found at https://osf.io/atj5q.

Results

Task performance

Training phase

Mean accuracy (M = 0.90 SD = 0.29) and mean reaction time 
(M = 2.53s. SD = 5.83s)7 on the training task improved over 
training blocks, as seen in significant effects of block on 
accuracy (F (3, 540) = 20.73, p <.001) and reaction time (F 
(3, 540) = 32.07, p <.001).

Test phase

Overall performance  Mean accuracy was high (M = 0.967 
SD = 0.180). After reaction time data cleaning (see above), 
mean response times were longer than in the training phase 

7   These results are from analysis of the final set of 178 participants. 
However, with no exclusions Accuracy M = 0.88 SD = 0.33; RT 
M = 2.40s, SD = 5.83s).

to identify participants who were aware of the color-category 
association (i.e., “aware participants”). The main analysis 
below consists of data from only “unaware” participants.

Survey responses  Participants whose responses to survey 
questions indicated knowledge of the color-category asso-
ciation (n = 23) and/or who answered “Yes” to “did you use 
color to categorize the aliens” (n = 31) were excluded from 
further analysis (total n = 38).

Explicit color knowledge accuracy  In the “from behind” 
post-test, participants were asked to classify stimuli based 
on their color only. Unaware participants are expected to 
be at or near chance performance on this task (EV = 8/16 
correct responses; SE = 2). Nine participants with perfor-
mance statistically greater than chance (12/16 = 0.75) on this 
task were identified as “quantitative aware” and were not 
included in the main analysis. After these exclusions, 178 
“unaware” participants were included in the main analysis.

Training phase

Accuracy analysis  Mean accuracy was computed for each 
participant and each block. Mean accuracy was analyzed 
using a one-way repeated measures ANOVA with blocks 
(1–4) as a within-subjects factor.

Reaction time analysis  Mean reaction time was computed 
for each participant and each block. Mean reaction time was 
analyzed using a one-way repeated measures ANOVA with 
blocks (1–4) as a within-subjects factor.

Test phase

Accuracy analysis  Each participant’s mean accuracy by con-
dition (congruent/incongruent) was calculated separately. A 
paired t-test was performed between conditions.

Reaction time data cleaning and analysis  All reaction time 
analyses were conducted on correct trials only. In addition, we 
took several measures to mitigate the effects of outliers on our 
main analysis of reaction times, as outlined in our preregistered 
protocol. First, outliers at the trial-level were identified by cal-
culating each participant’s mean and SD for reaction time and 
dropping trials that were 3 participant-SDs above or below 
each participant’s mean RT; this step was preregistered. We 
routinely exclude trials with RTs less than 200ms in RT analy-
ses because these were assumed to be mistakes, as the required 
decision could not be made in such a short interval (see e.g. 
Whalen et al., 1999); however, this step was not preregistered. 
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positive difference (incongruent RT > congruent RT), some 
do have a negative difference, and the size of the difference 
varies across participants.

Post-tests and survey

Strategy use (self-report)

87% of participants gave some response to the question 
“Describe the rule you used to classify the aliens (in your 
own words, to the best of your ability).” Of these, 85% 
gave a response that referred generally to the eyes and 
mouth or to the parity of the eyes and the shape of the 
mouth. An additional 3% referred to using a rule but did 
not describe the rule. While use of the declarative knowl-
edge rule was inferred from categorization accuracy, these 
responses provide additional support for our interpretation 

(M = 3.45s SD = 3.51s) reflecting the greater difficulty of the 
task.

Congruent/Incongruent accuracy analysis  Accuracy 
for congruent and incongruent trials was nearly identi-
cal ((MCONGRUENT = 0.967, MINCONGRUENT = 0.965; t 
(185) = 0.63, p =.53).

Congruent/Incongruent reaction time analysis  Partici-
pants’ RTs were significantly slower for incongruent than 
congruent trials: (MINCONGRUENT =3.274s (SD = 2.484s), 
MCONGRUENT = 3.063s (SD = 2.29s); MRTDIFF =.209s 
(SD =.481s); t (185) = 5.93, p <.0001; effect size (Cohen’s 
d) = 0.18). Figure  3 shows the comparison of RTs across 
condition, within participant. Figure  4 shows individual 
participant differences for mean incongruent RT – mean 
congruent RT. While the majority of participants have a 

Training Phase Test Phase

Accuracy

Reaction
Time

A)

B)

C)

D)

Fig. 3  Results (A) Training accuracy by block; high initial accuracy 
demonstrates use of the shape rule. Block 0 refers to the 12-item prac-
tice block before the four main training blocks. B Training reaction 
time decreased over successive blocks. C Test accuracy by condition: 
responses to color congruent trials were more accurate than incongru-

ent trials, but the difference was not significant. D Test reaction time 
by condition: Trials in which color and shape information conflicted 
(incongruent) were significantly slower than trials in which they con-
verged (congruent). (MINCONGRUENT =2.862s, MCONGRUENT = 2.719s; 
MRTDIFF =.143s, t (172) = 4.68, p <.0001)
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Discussion

Participants were explicitly taught a difficult disjunctive 
rule for categorization of stimuli (“aliens”) based on a com-
bination of eye and mouth characteristics, and successfully 
applied this rule during a training phase with feedback. 
During training, stimuli in each category were presented 
according to a biased color distribution, in effect creating 
a probabilistic color-category association (for a precedent, 
see Schoenlein & Schloss, 2022). Critically, in a subsequent 
test phase without feedback, participants showed faster 
categorization performance for trials in which the color-
category associations were preserved (“congruent” trials) 
than on trials in which the association was violated (“incon-
gruent” trials). This reaction time effect occurred in the 
absence of participants’ conscious awareness of color dif-
ferences between the categories, as assessed through ques-
tionnaire responses and performance on a color-category 
task. These results provide initial evidence that declarative 
and procedural learning systems can contribute to category 
selection within a single trial. On correct incongruent tri-
als, participants correctly applied the explicit categorization 
rule, while their performance was simultaneously slowed 
by the atypical colour associated with the stimulus. Partici-
pants reported little or no knowledge of the color informa-
tion, demonstrating that the color information was learned 
unconsciously and used automatically, meeting part of the 
definition for procedural learning. These results cannot be 
explained by current models of winner-take-all competition 
between procedural and declarative learning at encoding 
(McDonald et al., 2004; Mcdonald & Hong, 2013), consoli-
dation (Brown & Robertson, 2007; Galea et al., 2010), or 
retrieval (Crossley & Ashby, 2015). In addition, the finding 
of a reaction time difference between congruent and incon-
gruent trials in the test phase in the absence of declarative 
color-category association knowledge replicates the result 
of our earlier similar experiment (Kalra et al., 2024), reduc-
ing the probability that the current results are a form of Type 
I error. In addition, the effect size found here10 is slightly 
larger than that found in the preliminary study.

There are at least two forms of evidence that the explic-
itly-instructed rule was learned and implemented by a 
declarative form of learning. In their short debrief responses, 
a majority (> 85%) of participants explicitly referred to the 
eyes and mouth (diagnostic features), or to “the rule that 
was given,” and sometimes reported verbalizable heuristics 
based on the eyes/mouth rule. Furthermore, performance 
accuracy in the first block of training trials was near ceiling 
(Figs. 2a and 3a), suggesting that participants immediately 
applied the explicitly-instructed rule from the instruction 

10   In the pre-registered analysis, but see Appendix A.

that shape-based classification in these participants was 
supported by declarative knowledge of the complex dis-
junctive rule.

Explicit color knowledge post-test

On average, participants scored at chance on the explicit 
knowledge post-test (where categorization accuracy was 
based solely on stimulus color, in the absence of facial 
feature information; M = 0.493, SD = 0.50, t (182) = 0.74, 
p =. 461)8. Participants reported low confidence in 
their categorization decisions on the task: the mean 
slider response was 1.48 (SD = 0.63) (on a range where 
1 = guessing to 4 = completely confident). Furthermore, 
there was no significant difference in confidence rat-
ings for correct versus incorrect trials (Mcorrect = 1.48; 
Mincorrect = 1.49; SD = 0.78, t (182) = 0.236, p =.813), and 
no correlation between participant mean confidence and 
participant mean accuracy (r =.044, p =.556)9 (see Sup-
plemental Figure 4).

8   This was true regardless of whether “qualitatively aware” partici-
pants were included or excluded. The mean accuracy for “aware” par-
ticipants (n = 27) was also near chance M = 0.504, SD = 0.595 and not 
significantly different from the mean accuracy for unaware partici-
pants (Munaware = 0.498; Maware = 0.504; Welch’s t = 0.169, p =.866). 
However, participant mean confidence was higher for the aware 
participants (Munaware =. 1.397; Maware = 1.858; Welch’s t = 3.755, 
p <.001.) In addition, aware participants’ mean confidence rating 
for correct trials is significantly higher than incorrect trials (Mcorrect 
=1.942; Mincorrect = 1.1.77; t = 2.17, p =.03).

9   Nine participants scored above chance (> 75% accuracy), and these 
participants were labeled “quantitative aware” (analysis excluding 
“quantitative aware” participants was not preregistered but can be 
found in Appendix A). Only 3 participants were identified as both 
“qualitatively aware” and “quantitatively aware.”

Fig. 4  Individual differences in knowledge interaction effect. Each 
point represents the difference in mean RT between incongruent and 
congruent trials for a single participant. A black marker with error 
bars representing the standard error of the mean shows the overall 
mean difference across all participants (MRTDIFF =.143s, t (172) = 4.68, 
p <.0001)
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see Robertson, 2022). However, the current study involves 
interactions between the representations or knowledge 
formed by each system, not just their relative activity. In 
doing so, it presents a challenge for computational models 
such as COVIS that consider only the confidence and bias 
of each module’s decision, but do not consider whether the 
modules’ responses converge or diverge for downstream 
response selection (Ashby, Paul, & Maddox, 2011).

Conceptually, the current study employs a form of Jaco-
by’s Process Dissociation Procedure (1991). In the original 
form, the PDP was used to consider the relative contribu-
tions of two processes, recall and familiarity, to recognition 
performance. In our case, we are considering the contribu-
tions of procedural and declarative learning to categoriza-
tion performance. Importantly, such an approach starts with 
the assumption that the two processes both contribute to 
performance, an assumption that may not have been made in 
previous studies. In the PDP, two conditions are contrasted: 
when the two processes converge on the same response 
(facilitation condition, A + B) and when the two processes 
diverge (interference condition, A-B). In our case, it may 
be the case that either facilitation is seen in the congruent 
trials, when procedural and declarative systems indicate 
the same category response, or that interference is seen in 
incongruent trials, when the two systems indicate different 
category responses. If only one process contributed to per-
formance, there would be no difference between conditions. 
However, we observed a difference between congruent and 
incongruent trials, indicating that both processes contribute 
to categorization behavior. The design of the current study 
does not allow us to distinguish whether either facilitation, 
interference, or both facilitation and interference are occur-
ring, but it strongly suggests that at least one of these forms 
of interactions does occur. Future studies could include a 
“baseline” condition for comparison, which would allow 
clarification on whether facilitation or interference drives 
the difference between conditions.

Potential implications for basic science and 
directions for future research

One potential implication of the current findings is an update 
to the COVIS model of interaction between category learn-
ing systems. The current specification of COVIS imple-
ments “winner-take-all” decision-making through its gating 
mechanism (Ashby et al., 2011). The gating mechanism 
allows the input of only one module (verbal or implicit) to 
feed forward to decision-making. Borrowing a “mixture of 
experts” type gating mechanism from the ATRIUM model 
(Kruschke, 1990, 2011), the COVIS model could be altered 
to make it compatible with the current results. Briefly, the 
gating mechanism would need to take into account the 

phase, rather than searching for a rule or gradually accu-
mulating information about the shape-category relation. In 
addition, as all stimuli shown in the test phase were novel 
(i.e. not shown in the training phase), participants could not 
use memory for specific exemplars to categorize the test 
stimuli (that is, the specific combinations of color and facial 
features were novel in the test phase. All individual colors 
and legal facial feature configurations had previously been 
seen in the training phase.)

In addition, there are also multiple forms of evidence that 
the color distribution information was learned procedur-
ally (and not declaratively). In their short debrief responses, 
very few participants (< 10%) reported any explicit knowl-
edge of the biased color distributions; those who did were 
excluded from the analysis intended to show interaction 
between declarative and procedural information. Addition-
ally, we found that participants were at chance when asked 
to classify stimuli based on color alone, and their confidence 
ratings did not significantly differ between correctly and 
incorrectly classified colors (meeting the zero-correlation 
criterion; Dienes & Berry, 1997). Thus, taken together, par-
ticipants in our final sample demonstrated little or no aware-
ness of the hidden color distribution, but nevertheless were 
slower on incongruent trials. For these reasons, we infer that 
the color distribution was learned procedurally. Despite the 
fact that the reversed form of the test phase could poten-
tially disadvantage a procedural learning system (Anderson 
& Fincham, 1994; Vaquero et al., 2020), we interpret the 
maintenance of the effect across this reversal as evidence 
of abstract learning beyond stimulus-response association 
(Reber, 1993; Seger, 1994), such as the formation of a prob-
abilistic color-category stimulus space.

Our findings are consistent with previous research show-
ing that procedural encoding can take place simultaneously 
and “covertly” during declarative encoding (Foerde et al., 
2006; Packard & McGaugh, 1996; Song et al., 2007). How-
ever, other previous research has demonstrated competition 
at consolidation (Brown & Robertson, 2007; Galea et al., 
2010) and/or retrieval (Crossley & Ashby, 2015; Packard 
& McGaugh, 1996). The results of the current study dem-
onstrate that, at least in some situations, the competition at 
retrieval is not a zero-sum game: the output from one system 
is not completely disregarded or discarded in the process 
of decision-making. It may be the case that responses are 
either facilitated when procedural knowledge and declara-
tive knowledge converge on a categorization decision, or 
hindered when they diverge.

Many of the previous studies on interaction between pro-
cedural and declarative learning have focused on whether 
both systems are active during encoding or retrieval, and 
whether one system’s activity inhibits or facilitates activ-
ity in the other (see e.g., Freedberg, 2020; for exceptions 
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most memory system taxonomies, there has been little work 
connecting procedural or implicit category learning with the 
acquisition and development of semantic memory. There is 
sadly even relatively little work connecting even declarative 
category learning and semantic memory formation.

Although the current behavioural results cannot speak 
to this issue, we are currently conducting a fMRI-repre-
sentational similarity analysis (RSA) study to address this 
question. Because the category structures learned by each 
system are slightly different, different theoretical similar-
ity matrices can be constructed which will then reflect the 
contribution of each system. These theoretical matrices can 
then be compared to empirical similarity matrices derived 
from brain activity (Kriegeskorte et al., 2008). If the areas of 
the brain in which patterns of activity (empirical similarity 
matrices) correlate with the theoretical matrices for proce-
dural and declarative learning do not overlap, we can infer 
that the representations formed by each form of learning are 
distinct.

Finally, looking backward, rather than forward, it may be 
possible to reinterpret some traditionally puzzling findings 
(such as Allen & Brooks, 1991; Armstrong et al., 1983) in 
the context of interaction between rule-based and similarity-
based representations of a stimulus space. Allen and Brooks 
(1991) found that participant categorization decisions were 
skewed by similarity along non-diagnostic (but partially 
predictive) dimensions; it could be the case that this inter-
action between rule-based and similarity-based reason-
ing was an interaction between declarative and procedural 
knowledge, as in our study, but to an extent that influenced 
accuracy as well as response times. Armstrong et al. (1983) 
demonstrated that participants would, when prompted, 
gave responses that suggested a graded representation even 
for categories with strict criteria (such as odd numbers). 
These apparently paradoxical findings could potentially 
be explained in terms of task demands that preferentially 
recruit procedural or declarative knowledge for decision 
making. Future research could include replications of these 
classic studies with specific controls and measures in place 
to monitor the relative contributions of procedural and 
declarative knowledge.

Potential implications beyond basic science

One practical implication of the current findings is that in 
complex, real-world situations, both declarative and proce-
dural decision-making processes may interact. For example, 
in formal instruction, students are often given rules or nec-
essary and sufficient criteria for category membership (e.g., 
mammals have hair and produce milk to feed offspring). 
However, even when students are given such a rule or cri-
teria, if they experience only a biased selection from the 

relative direction (sign) of each module’s decision (e.g. Cat-
egory A positive, Category B negative) in addition to the 
existing confidence and bias parameters, and sum the inputs 
from each module rather than selecting only one.

Another area for consideration is the developmental tra-
jectory of interaction between procedural and declarative 
learning. We know that procedural and declarative learning 
have different developmental trajectories, with procedural 
learning maturing sooner (Finn et al., 2016). For this rea-
son, we might predict that interactions between procedural 
and declarative learning in young children might show a dif-
ferent pattern than that observed in healthy, young adults, 
with stronger contributions from the procedural system. 
However, several studies of category learning with children 
have suggested that children perseverate in using simple 
rule-based strategies based on declarative learning (Huang-
Pollock et al., 2011; Rabi et al., 2015; Rabi & Minda, 2014). 
The explanation proposed by these studies is that the chil-
dren are unable to inhibit the output of the declarative sys-
tem, which is consistent with the relative immaturity of 
prefrontal areas responsible for inhibition as well as other 
means of adjudicating between different response options 
(Gogtay et al., 2004; Lenroot & Giedd, 2006; Shaw et al., 
2006). However, these studies contrasted category induc-
tion for rule-based (declarative) and information-integration 
(procedural) category structures; the children had to infer 
the rule rather than being told a rule before the task started. 
Pure induction reflects the way naturalistic categories are 
learned, but is not necessarily how categories and concepts 
are typically learned in formal instructional contexts, like 
classrooms. In these contexts, instruction often emphasizes 
declarative knowledge without considering the role that 
covertly learned procedural knowledge may play. Future 
studies, such as those that adapt the current paradigm for use 
with children, will be needed to fully address the issue of 
developmental differences in interactions between declara-
tive and procedural learning, particularly when considering 
instructional implications.

Perhaps because of the emphasis on establishing the 
separateness of multiple category learning systems, little 
research has investigated whether and how the representa-
tions of category information formed by each system might 
interact. In the current study, we have demonstrated that 
although two separate mechanisms may contribute to the 
acquisition of category information, they can both influ-
ence response selection. This finding raises the question of 
whether each system creates a distinct representation of the 
category structure, and both of these contribute to response 
selection, or whether both systems contribute to the creation 
of a shared knowledge base. This “shared knowledge base” 
could in fact be what is thought of as semantic memory, 
but because semantic memory is grouped as “declarative” in 
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interventions for counteracting implicit bias recruit explicit 
reasoning and declarative knowledge (Devine et al., 2012; 
Forscher et al., 2019), our findings support suggestions that 
interventions that recruit procedural learning mechanisms, 
such as the presentation of counter-stereotypical exemplars, 
may be an important complement (FitzGerald et al., 2019; 
Forscher et al., 2019), since both procedural and declarative 
knowledge can contribute to real-time decision making.

Limitations

On that note, one important limitation of the current study is 
low ecological validity. Although we have suggested practi-
cal implications, we hasten to point out that the paradigm 
used in this study bears only a faint resemblance to learn-
ing in a classroom setting or making decisions that may be 
affected by social bias. In particular, fewer exemplars can be 
presented in a classroom or other real-world situations, and 
they are usually distributed more widely across time and 
without immediate feedback. It is possible that the selection 
of examples from the space creates an implicit representa-
tion that could conflict with a rule-based category defini-
tion in real-world learning settings, just as in our laboratory 
paradigm, but this must be confirmed empirically in studies 
with greater ecological validity.

Another limitation is related to precise interpretation of 
the results. Although we successfully demonstrated that 
reaction times were faster when the responses of each sys-
tem converged, the design of the current study does not 
allow us to infer whether this is due to facilitation in congru-
ent trials or interference in incongruent trials. Future studies 
could be designed to include a baseline condition for com-
parison to aid in distinguishing these possibilities.

Finally, while we have taken several steps to ensure that 
the color-category association was not learned by a declara-
tive mechanism, future studies could go further to estab-
lish affirmatively that it was in fact learned by a procedural 
mechanism. One way to do this would be to use a delayed 
or deferred feedback condition during training; this should 
“block” procedural learning (see e.g. Maddox et al., 2003; 
2004 Maddox & Ing, 2005; Foerde & Shohamy, 2011a; 
Smith et al., 2014, 2018), thereby supporting the interpreta-
tion that in the immediate feedback condition, it is indeed 
a procedural process that allows learning of the color-cate-
gory association.

Conclusion

In the study presented here, we have demonstrated a novel 
form of interaction between procedurally-learned and declar-
atively-learned category information in decision-making. 

space of possible category members (e.g. only dogs and cats 
as mammals), they may have difficulty transferring their 
knowledge of mammals in general to unfamiliar exemplars 
(whales, armadillos). Our main finding is consistent with an 
emerging body of evidence that supports the idea of sam-
pling broadly from the example space during instruction 
to facilitate later transfer (Carvalho et al., 2021; Nosofsky 
et al., 2018). However, other studies have suggested that 
more narrow sampling, particularly focused on a catego-
ry’s central tendency may be beneficial for learners (Bow-
man & Zeithamova, 2020, 2023; Homa & Vosburgh, 1976; 
Homa & Cultice, 1984). Further research will be required 
to determine when and why narrow versus broad sampling 
is beneficial for robust learning and transfer. Considering 
interactions between procedural and declarative knowledge 
may clarify the conditions under which broad versus narrow 
sampling is beneficial in instruction.

Furthermore, our results suggest that individuals may 
vary in the degree of interaction between procedural and 
declarative knowledge in decision making (Fig. 4). In addi-
tion to being an interesting contribution to basic science, 
this finding may also have applications in educational set-
tings. It may be the case that for some students, for example 
those with atypical executive function (e.g., low working 
memory, ADD/ADHD), strategic instructional domain 
space sampling may play an especially important role in 
facilitating their abilities to apply rules and recognize cat-
egory members. We are currently investigating the role of 
such individual-level variables in predicting the knowledge 
interaction effect.

Our results also provide insights into the formation of 
stereotypes and potential ways to counteract learned nega-
tive associations. Similar to many studies using the Implicit 
Association Test (Greenwald & Banaji, 2017), the current 
findings provide further experimental evidence that behav-
ior is often influenced by a combination of implicit repre-
sentations based on accumulated experiences and explicit 
understandings or beliefs. Generally, the IAT reveals reac-
tion time differences whereby pairing a social group with 
traits that are stereotypically associated with that group (e.g., 
male – engineer) results in faster reaction times than pairing 
with traits that are stereotypically not associated (e.g., male 
– nurse) (Banaji & Hardin, 1996). Importantly, these reac-
tion time differences are found even when individuals hold 
explicit beliefs that contradict the stereotypes (Greenwald 
& Banaji, 1995; Greenwald et al., 1998); somehow, expo-
sure to stereotypes in the environment (for example through 
media portrayals) creates an implicit bias that can operate 
despite an individual’s best intentions to hold unbiased 
attitudes towards particular social groups. Our findings are 
consistent with this general model of interaction between 
implicit and explicit representations. While many successful 
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This form of interaction is not predicted by previous studied 
or accepted models of interaction between memory systems. 
While much future work is required to determine precisely 
when and how such interaction takes place, we have at least 
provided a plausible example of procedural and declarative 
knowledge being used simultaneously to complete a task. 
Future studies may reveal the extent to which such interac-
tion underlies phenomena such as expert performance, lan-
guage learning and use, and tool use, among others.
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