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Abstract

Skilled behaviour in real-world contexts often relies on a combination of both declarative and procedural learning. How-
ever, precisely how declarative and procedural knowledge interact is not yet fully understood. Previous findings have
shown that procedural and declarative learning may interact or compete at the systems level during encoding, consolida-
tion, and retrieval, but beyond this, it is not known whether declarative and procedural representations themselves interact.
The goal of the current study is to investigate whether procedural and declarative knowledge can contribute simultaneously
to categorization response selection behavior. We designed a stimulus set in which information learned by each system
sometimes supports different responses, and created trials in the test phase that are designed to maximize such divergence.
Participants were instructed to use a completely diagnostic, verbalizable, shape-based rule to categorize exemplars, receiv-
ing feedback after each trial. However, unbeknownst to participants, the categories also differed probabilistically in their
color distributions. Participants used both color (learned procedurally) and shape (learned declaratively) to categorize
exemplars, responding more quickly when both sources indicated the same category judgement, and more slowly when
they conflicted. Debriefing confirmed that most participants were unaware of the color distributions. These results show
simultaneous trial-level contributions from both declarative and procedural memory systems. Our findings represent a
novel form of interaction between the two systems and have implications for domains beyond the laboratory, such as
decision-making and classroom instruction.

Introduction

The last century has seen great strides in our understanding
of human learning and memory. Compelling evidence indi-
cates that there are multiple dissociable memory systems
with different characteristics and instantiated in different
neural substrates (Gabrieli, 1998). One of the best-charac-
terized systems is referred to as the declarative memory sys-
tem, which requires intact medial temporal lobe structures
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and can yield verbalizable knowledge, which can be acquired
within a single trial (Eichenbaum & Cohen, 2001; Graf &
Schacter, 1985; Cohen & Squire, 1980). Within the mul-
tiple forms of memory that are not available to awareness
and do not require the medial temporal lobe (Reber, 2013),
another well-characterized system is the procedural mem-
ory system, which relies on a fronto-striatal network and
is characterized by gradual learning across multiple learn-
ing episodes, yielding non-verbalizable knowledge that is
more easily expressed through performance (Squire & Zola-
Morgan, 1988; Squire, 1992, 2004, Reber & Squire, 1994).

The last few decades have moved beyond establishing
the dissociable systems to examining ways that they may
interact, since both are available in healthy adults. Many of
these investigations have focused on competition (Poldrack
& Packard, 2003), or possible collaboration (Freedberg
et al., 2020) between systems during the learning process
(encoding). What has not been examined as closely is
whether and how information from both systems may con-
tribute to downstream processes such as decision making
and response selection.
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As we review below, much existing evidence suggests
that information from only a single system at a time con-
tributes to these downstream processes. However, outside of
the laboratory, we observe scenarios in which information
from both systems appears to be used simultaneously. For
example, when making diagnoses, medical experts seem to
use a combination of both conditional reasoning based on
declarative knowledge as well as probabilistic reasoning
based on experience (Norman & Brooks, 1997). Similarly,
professional musicians performing from memory seem to
simultaneously draw on both a non-verbalizable represen-
tation of motor sequences as well as a verbalizable under-
standing of the structure, form, and meaning of a musical
piece (Chaffin et al., 2009 cited in Reber, 2013). Increas-
ing evidence also suggests that procedural and declarative
knowledge interact in language learning (Ullman, 2004,
2016; Pili-Moss, 2022) and tool use (Roy & Park, 2010;
Roy et al., 2015).

Procedural and declarative category learning

Like tool use and language learning, category learning—
learning that stimuli (such as objects) belong to categories,
and that members of a category can often be treated in the
same way —can be accomplished through either declarative
or procedural learning, depending on task demands and cat-
egory structure. In a typical category-learning experiment, a
participant is shown an example stimulus (e.g., a face, but-
terfly, or abstract shape) and asked to classify it into one of
two categories, with feedback given after each trial. Evi-
dence of learning in these tasks is seen in increasingly accu-
rate responses as training progresses, and can be measured
against chance responding, which is usually 50% accuracy
given the two-alternative forced-choice format.

When the category structure is simple and verbaliz-
able (such as a unidimensional aka “Rule-Based” category
boundary), declarative, verbally-mediated methods for
learning are most efficient, and tend to be used more by
participants. Declarative/verbalizable category learning has
been mapped to the declarative or explicit long-term mem-
ory system in the human brain (Ashby & O’Brien, 2005),
which depends on structures in the medial temporal lobe
(MTL), including the hippocampus (Gabrieli, 1998 inter
alia).

However, when the category structure is complex (such
as in multidimensional or “Information-Integration” cat-
egories), or the relationship between items and category
membership is probabilistic, then declarative strategies are
inefficient. Under such circumstances, successful learning
usually occurs through a non-declarative category learning
mechanism. Specifically, one type of non-declarative long-
term memory, sometimes referred to as “skill and habit
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learning” or “procedural learning”, depends on the stria-
tum of the basal ganglia and can be used to learn complex
or probabilistic categories (Foerde et al., 2007; Knowlton
et al., 1994, 1996a, b; Ashby & O’Brien, 2005; Ashby &
Ell, 2001; Ashby & Ennis, 2006; Seger & Cincotta, 2006;
Ashby et al., 1998; Foerde, 2018; Foerde & Poldrack, 2008;
Knowlton et al., 1996a; Salmon & Butters, 1995; Seger,
2006). Importantly, the term “procedural” in the cognitive
neuroscience long-term memory taxonomy (see e.g. Squire
& Zola-Morgan, 1996, Fig. 1) is not used to mean “knowl-
edge of procedures” or to mean only stimulus-response
associations or condition-action rules, as it may be used
in other areas of cognitive psychology. Specifically, this
usage of “procedural” refers to skill and habit learning that
depends on the basal ganglia and leads to abstract, long-
term knowledge (Reber, 1989; Seger, 1994). Importantly,
procedural learning is not limited to motor skill acquisition,
but also includes cognitive skill acquisition (Poldrack et al.,
1999; VanLehn, 1996; Wan et al., 2012).

Existing research on interactions between memory
systems in category learning

Existing research on interactions between memory systems
in category learning has emphasized competition, either at
encoding or retrieval. Inspired by findings in rodent mod-
els that lesioning one system seemed to improve function
of the other system (McDonald et al., 2004; Mcdonald &
Hong, 2013; McDonald & White, 1995), early models of
interaction between declarative and procedural memory
in humans emphasized competition for resources during
encoding (learning) '. Supporting this view, Poldrack et al.
(2001) examined fMRI data from participants performing
either a probabilistic classification task or a paired associate
(declarative memory) task with the same stimuli and found
an inverse relationship between MTL and striatal activity
while participants performed a probabilistic classification
task. They interpreted the results as evidence for competi-
tion between the systems during learning.

However, several subsequent studies suggested that
simultaneous encoding—without interference or competi-
tion—could take place. For example, Foerde et al. (2006)
found that activity in striatal regions was similar in both
a single task condition and a dual-task condition (which
is known to impair declarative category learning: Wal-
dron & Ashby, 2001), suggesting that procedural learning
occurred regardless of declarative learning. Several studies
by Crossley and colleagues have also demonstrated simulta-
neous encoding of category information by procedural and

' Competition during consolidation has been observed in sequence
learning, but to our knowledge not in category learning. (Brown et
al., 2009; Brown & Robertson, 2007; Galea et al., 2010)
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declarative systems (Ashby & Crossley, 2010; Crossley &
Ashby, 2015; Turner et al., 2017).

To our knowledge, few studies have examined potential
cooperation between declarative and procedural systems in
categorization. One exception is an event-related fMRI study
of probabilistic classification, by Dickerson et al. (2011),
which found that both the medial temporal lobe and striatum
showed a greater BOLD response to difficult cues than easy
cues. Furthermore, they observed significant correlation in
the time course of BOLD responses between the two areas,
demonstrating functional connectivity. The authors interpret
these results to mean that not only could both systems work
in parallel without interfering with each other, but speculate
that they may even collaborate to enhance overall learning?.

Without contradicting the possibility of simultaneous
encoding, some studies suggested that competition between
the systems might take place later, when knowledge is
retrieved and applied (Poldrack, & Rodriguez, 2004), rather
than at initial encoding. For example, rodents who had
shifted from medial-temporal based representations to stria-
tal based representations to navigate a maze reinstated the
previously-learned medial temporal-based representations
when their striata were inactivated with lidocaine (Pack-
ard & McGaugh, 1996). Similarly, while the studies by
Crossley and colleagues mentioned above support the idea
of simultaneous encoding, they also supported the idea of
competition at retrieval or application.

Finally, some evidence suggests that if provided with an
explicit cue, participants can flexibly switch between rule-
based and information-integration categorization strategies
on different trials within the same session (Turner et al.,
2017). This finding demonstrates that coordination between
the two systems is possible and may be managed by a third,
coordinating system or mechanism’. However, intentional
trial-by-trial switching appears to be rare or difficult in the
absence of explicit cueing (Erickson, 2008; Turner et al.,
2017).

Evidence for possible within-trial interaction

To our knowledge, no study has been specifically designed to
test whether information from both systems simultaneously

2 Cooperation between systems in the form of increased functional

connectivity has also been observed for non-categorization tasks,
including sequence learning (Albouy et al., 2013; Freedberg et al.,
2020).

The idea of a “third party” mediating the balance of function
between procedural and declarative memory has been introduced
in other discussions of interactions between procedural and declara-
tive memory, but not in the context of category learning specifically.
(Cabeza & Moscovitch, 2013; McDonald et al., 2004; Mcdonald &
Hong, 2013)

3

contributes to a response within a single trial. However,
some studies have hinted at this possibility.

For example, Allen and Brooks (1991) observed that
even though participants were given a perfectly predic-
tive classification rule, their responses on a transfer task
were nevertheless affected by similarity to previously seen
exemplars along irrelevant dimensions—almost as if the
similarity information were “contaminating” the rule-based
classification. However, this study was originally designed
to contrast rule-based and exemplar-based learning, not
declarative and procedural learning, so it is possible that
that the generalization based on exemplars could have been
mediated by either procedural or declarative mechanisms®.
Similarly, Schoenlein and Schloss (2022) trained partici-
pants to classify stimuli based on a completely diagnostic
shape difference, but using a cool-biased color distribution
for one category and a warm-biased color difference for
the other category. Participants were able to use the shape
rule effectively, and in a set of debriefing questions, they
did not report color as a feature used to classify the stimuli.
However, after training, participants were asked to rate how
associated different colors were with each category (using
the category names) on a continuous scale labeled from “not
at all” to “very much.” The participants rated cool colors
as more associated with the cool-biased category and warm
colors as more associated with the warm-biased category,
even generalizing to warm and cool colors that had not been
included in the training set. These findings demonstrate that
participants were able to form a color-category association
with out any explicit instructions or cues to attend to color,
even while they were simultaneously using a fully diagnos-
tic non-color rule. However, since the color-category asso-
ciations were assessed outside of the categorization task,
this study could not test whether this probabilistic color
information directly influenced category decisions during
online classification performance. In addition, the degree
to which the color-category association was available to
declarative and explicit processes was unclear: participants
did not report use of color to categorize stimuli in a verbal

4 Allen and Brooks hypothesized that similarity to training items
would affect test responses through the mechanism of episodic
retrieval, i.e. explicitly remembering specific training phase exem-
plars and comparing the current test phase stimulus to them. Because
of this theoretical framing, the feedback given to participants in the
training phase of the Allen & Brooks study was not [optimized] for
implicit learning; the feedback was somewhat indirect (an image
showing the “animals” either “digging” or “building” their nests,
thus revealing their membership in either the “digger” or “builder”
category). In the current study, simple “correct” or “incorrect” feed-
back is given immediately after each trial, and a consistent response-
stimulus-interval separates trials. Another important difference is that
in the test phase of Allen & Brooks, most of the test items (32/40,
80%) were repeated from training, whereas in the current study, no
training items are repeated in the test phase.

@ Springer
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debrief, but were able to rate the association between each
color and category.

More closely, Batterink and colleagues (Berger & Bat-
terink, 2024; Batterink et al., 2014) taught participants an
explicit rule (near/far objects) governing the use of novel
artificial words in a word-object matching task. However,
unbeknownst to the participants, the words also differed
along a covert, second dimension (animate/inanimate
objects). Participants showed greater reaction-time and
lower accuracy on trials in which the word-animacy con-
tingency was violated, even though they were unaware of
the article-animacy contingency. This finding shows that
information acquired without awareness can affect inten-
tional response decisions that are made on the basis of a
deterministic rule, delaying response times when the two
forms of information conflict. These results suggest that
both information that the participant is aware of, as well as
information that the participant is not aware of, are interact-
ing at the point of response selection.

However, the results of the studies by Batterink et al.
leave room for explanations other than an interaction of
procedural and declarative knowledge. For example, in any
case of language or language-like learning, there is the pos-
sibility that language-specific learning mechanisms may
be engaged, rather than (or in addition to) domain-general
learning mechanisms. Moreover, although Batterink et al.’s
study included violation trials throughout, other aspects of
the task, such as the cue-outcome probabilities, and in par-
ticular the mapping to a semantically available construct
(animacy), differ from classic probabilistic classification
tasks that are known to engage procedural learning mecha-
nisms (see e.g. Knowlton, 1994, 1996).

Inspired by, and borrowing elements from, the studies
mentioned above, we have designed a paradigm specifically
to examine the interaction of declarative and procedural
learning mechanisms in visual category learning.

The current study

The goal of the current study is to observe whether proce-
dural and declarative knowledge contribute simultaneously
to categorization response selection behavior, after initial
encoding has occurred. It can be difficult to disentangle
the contributions of multiple learning systems in a single
task because the systems typically converge on common
responses. Here, we have designed a stimulus set in which
information learned by each system sometimes supports dif-
ferent responses, and we have created trials in the test phase
that are designed to maximize such divergence.

For the declarative system, we provide—explicitly, ver-
bally, and with examples—a deterministic, verbalizable
category rule based on feature combinations. In theory, this

@ Springer

rule can be learned based on a single verbal presentation.
For example, Category A is defined by one combination of
features, and Category B is defined by another set.

For the procedural system, our training items follow a
distribution of colors that differs probabilistically between
the two categories (as defined by the feature combination
rule). As in the Schoenlien and Schloss (2022) study, one
category is presented in a warm-biased color distribution,
and the other in a cool-biased color distribution (for exam-
ple, training exemplars from Category A might appear in
cool colors more often than in warm colors, and vice versa).
Importantly, the relationship between colors and category is
probabilistic: exemplars from each category appear in each
of the possible colors, but for one category, the probability
of an exemplar appearing as a warm color will be low (and
vice versa) (see Fig. 1). If a color-category association is to
be learned, it must be learned gradually, with feedback, via
the procedural category learning system. The structure and
task demands of probabilistic color-category association
learning are very much like the probabilistic classification
task, which has been reliably demonstrated to use the stria-
tal procedural system (Foerde & Shohamy, 2011b; Knowl-
ton et al., 1994; Knowlton et al., 1996a, b; Shohamy et al.,
2004; Squire et al., 1994).

The experiment presented here includes a training phase
and a test phase. The biased color distributions are used in
the training phase to establish a color-category association.
However, a non-biased color distribution is used in the test
phase, so that many of the trials present a color-category
combination that violates the expected color-category asso-
ciation established in the training phase (for example, if
Category A was presented as warm-biased in the training
phase, then the violation/incongruent trials in the test phase
would include Category A stimuli presented in cool colors).

We also include measures of whether the color-category
knowledge is available to awareness or not. If it is learned
gradually, based on feedback, and without awareness, we
may infer that this learning is mediated by the striatal pro-
cedural system. During the test phase, if we see a difference
between trials in which procedural and declarative learning
point to the same response (congruent) compared to those
trials in which they point to different responses (incongru-
ent), we will conclude that both sources of information con-
tribute to response selection within a given trial. If we do not
observe such a difference, we will conclude that information
from both systems is not used simultaneously in response
selection, at least in the current paradigm.

We initially explored these questions in a preliminary
study that was presented as conference proceedings paper
(Kalra et al., 2024). The current study improves on the origi-
nal by including a post-test for color-category knowledge,
as well as pre-registration of the analysis plan. The findings
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Category A

Odd # eyes + round mouth OR
Even # of eyes + square mouth

Cool Color Distribution

il

Congruent

Incongruent

Fig. 1 Experiment design. Participants were told the complex disjunc-
tive eye/mouth rule for classifying alien stimuli. In the training phase,
items for each category were presented across a biased color distribu-
tion, either cool-biased (Category A) or warm-biased (Category B),

of the current study are consistent with the findings of the
original study, so the current study may be considered a suc-
cessful pre-registered replication (and expansion) of that
study.

Methods
Participants
A total of 235 participants were recruited using the Connect

Cloud Research platform (Hartman et al., 2023) following
an approved ethics protocol (ages 19-71; mean age 36.69

Category B
Odd # eyes + square mouth OR
Even # eyes + round mouth

Warm Color Distribution

16 — —

144

124

101

Congruent

Incongruent

creating a probabilistic color-category association. In the test phase,
an even distribution of congruent and incongruent items from each
category were presented

years; 50% Male, 50% Female by self-report). Participants
were compensated US$4.50 for completing the task. To
encourage engagement with the task, participants were told
that bonuses were possible for performance over 90% (the
bonus given was $0.50). An accuracy performance criterion
(70% accuracy on training and test phases) was instituted
to detect and eliminate online participants who did not fol-
low directions; participants were told that 70% accuracy
was necessary to “win” the game, and mean accuracy was
displayed on screen during the training phase. Of the 235
participants who completed all parts of the study, 204 met
the minimum performance criterion and were included in
further analyses.

@ Springer
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This protocol for this study, including performance cri-
teria for exclusion, was preregistered®. The preregistered
protocol can be found at https://osf.io/atj5q.

Materials
Alien Stimuli

“Alien” images were created using custom code and
Python’s PIL package to combine geometric figures (ovals,
rectangles, etc.). Each alien stimulus consisted of a large
oval with some configuration of the following features:
number of eyes (1-4), mouth type (round or angular), nose
type (round or angular), ears (present or absent). All thirty-
two possible combinations of these features were gener-
ated and used in the experiment (see Fig. 1A for example
images).

Categorization features and explicit rule Alien stimuli were
divided into two categories based on a disjunctive (exclu-
sive “or”/XOR) rule over the eye and mouth dimensions
(Fig. 1). Stimuli in Category A had either a round mouth
and odd number of eyes OR a square mouth and even num-
ber of eyes. Conversely, stimuli in Category B had either a
square mouth and odd number of eyes OR a round mouth
and even number of eyes. Thus, each category included
16 possible configurations of features (including both the
diagnostic [eyes, mouth] and nondiagnostic [nose and ears]
feature dimensions). Because of the disjunctive nature of
the rule, each category could be further divided into two
subcategories based on which part of the rule applied (e.g.,
for each category, odd number of eyes and even number of
eyes belonged to different subcategories). The complex dis-
junctive rule was chosen for two reasons. First, a disjunctive
rule is difficult or impossible to learn from feedback alone
(see e.g., Shepard et al., 1961; Feldman, 2000, 2003), so any
use of the eyes/mouth rule could be assumed to be via the
declarative system. Second, the complexity of the complex
disjunctive rule requires considerable working memory and
attention resource allocation, so it was unlikely that partici-
pants could attend to and become aware of the biased color
distributions.

Color selection and distribution Each configuration of fea-
tures was then generated in a variety of colors (Fig. 1). Col-
ors were divided into warm and cool colors based on their
hue angle. Even hue-angle spacing was used to choose hue
angles of 0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300,

5 Note that the current, preregistered study is a replication of a previ-
ous, non-preregistered study. The results reported here are consistent
with the results of the previous study, which can be found in Kalra
et al.,2024.
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330 (where 0 corresponds to red and 180 to cyan). Warm col-
ors were defined as those within 90 degrees (+/-) of 0; cool
colors were defined as those greater than 90 degrees (+/-)
from 0. For each hue angle position, saturation (chroma)
was adjusted to minimize differences in saturation across
hue angles and between warm and cool color groups. Given
the inherent asymmetry of the visual color space, it was not
possible to equalize luminance (brightness) between warm
and cool colors; cool colors were systematically lower in
luminance than warm colors (see Supplemental Figure 1).
The COLORMATH package for Python (Taylor, 2018)
was used to select colors in CIELCh,, color space (CIE,
1986) and to calculate the distances between colors in that
color space (delta e). Degree of warmness and differences
in warmness between colors were calculated based on hue
angle and distance from 0. LHC and RGB values can be
found in Table 1 of the Supplemental Materials. Note that
because participants completed the tasks on their own com-
puters via the online platform, actual displayed colors may
have varied from our original specifications. However, the
relative differences between colors would likely have been
largely preserved.

Training phase color distributions Unbeknownst to partici-
pants, stimuli in the training condition followed biased color
distributions. Two color distributions were created: one
warm-biased and one cool-biased, and each was assigned
to a category in counterbalanced fashion (i.e., for half of
participants, Category A followed the warm-biased distribu-
tion and Category B the cool-biased distribution, and vice
versa for the other half; see Fig. 1). Each color distribution
included a total of 92 alien stimuli distributed across all 12
hue values. Each distribution contained 74 congruent (e.g.,
warm colors in the warm-biased category) alien stimuli and
18 incongruent (e.g., cool colors in the warm-biased cat-
egory) alien stimuli. Within each category, each color was
also distributed evenly across subcategory and number of
eyes. The distribution of non-diagnostic features (nose type
and ears/no ears) was also matched between the two cat-
egories. This balancing of color across subcategory, number
of eyes, and non-diagnostic features was done to reduce or
eliminate the possible formation of color-feature associa-
tions other than the intended color-category association.

Procedure

Overview

Participants completed the task on their personal comput-
ers (option to complete the task on tablet or phone was dis-

abled). After giving informed consent, participants viewed
an explanation of the explicit rule on a screen with visual
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Which ship?

Explic_:it
Instructions

Training
Phase

Debrief

TestPhase

Fig. 2 Schematic illustration of experiment procedure. Feedback was given during the training phase but not the test phase

examples. Participants then progressed through the train-
ing phase, followed by the test phase. Finally, participants
answered demographic and debriefing questions and com-
pleted a brief test of color-blindness using Ishihara plates.
All instructions were provided in text form on the computer
screen. Consent, demographic, debriefing, and colorblind-
ness items were administered through Qualtrics (Qualtrics
Software Company, 2024 Provo UT). Training and test phase
categorization tasks were programmed in PsychoPy (Pierce
et al., 2019), uploaded to the Pavlovia online experiment
platform (www.pavlovia.org), and embedded in Qualtrics.

Training phase

Participants were given a cover story in which they were
asked to match alien stimuli to their appropriate vehicles—
aliens of one category used rockets, while the other category
used saucers (no verbal labels were given for vehicle type).
Participants were instructed on the explicit rule through
slides that explained the rule (e.g. “Group 1° aliens have
square mouths and an odd number of eyes”) and provided
examples. The training task then began. A short practice
block of 12 trials preceded the four training blocks. The
stimuli in the practice block were sequenced to highlight
the diagnostic features differentiating the categories (e.g.,
Category A stimulus with one eye followed by Category B
stimulus with one eye). In all other ways practice trials were
identical to training trials.

On each trial, participants were shown an alien stimu-
lus and two images of spaceships—one rocket, one saucer-
shaped. The rocket was always on the left side of the screen
and the saucer on the right (see Fig. 2). Participants catego-
rized each alien stimulus by choosing rocket or saucer (left/
right) with a key press (f/j). Participants received feedback
in the form of the words “correct” or “incorrect” displayed

® We attempted to limit verbal labeling of each category by refer-
ring to “Group 1” and “Group 2” in participant instructions. What the
participants were told were Group 1 and Group 2 map to our internal
division between Category A and Category B.

on the screen. Feedback was based solely on the explicitly
instructed mouth/eyes rule. Category-ship combination was
counterbalanced across participants, so for half the partici-
pants Category A stimuli used the rocket and Category B
stimuli used the saucer, and vice versa for the other half. To
encourage accurate performance, incorrect responses were
followed by a 3-second delay with countdown, serving as a
penalty for errors. The task screen also included a “power
bar” showing cumulative accuracy; in the pre-task instruc-
tions, participants were told that cumulative accuracy above
70% was necessary “to win the game.”

Although participants were incentivized with regard to
accuracy, they were not given any instructions regarding
speed of response (i.¢., they were not specifically instructed
to respond as quickly as possible while being accurate). In
addition, there was no response deadline; stimuli persisted
on each trial until terminated by participant response. One
reason we chose not to impose a response deadline on par-
ticipants was to decrease stress, which is known to impair
performance on complex cognitive tasks (e.g., Sussman
& Sekuler, 2022, Caviola et al., 2017). We also assumed
that participants were internally motivated to complete
their participation as quickly as possible; this is why the
3-second delay was thought to be an effective deterrent
for attempting to speed through the task without regard
to accuracy. While a few highly accurate participants had
long average responses times, across participants we did
not observe a reaction time-accuracy trade-off (Supple-
mental Figure 5).

An inter-trial interval of 500ms separated the feedback
screen and the subsequent alien stimulus presentation; dur-
ing the ITI, only the background elements of the trial (such
as the ships) appeared. Stimuli were presented in 4 blocks
of 44 trials (plus one initial practice block of 12 trials); each
block was roughly even in terms of category, color, sub-
category, and non-diagnostic features. Stimulus order was
pseudorandom such that no more than 3 trials from the same
category appeared consecutively and consecutive same-
color or same-eye-number trials were similarly limited.

@ Springer
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Trial order within a block was fixed, but block order was
random across participants.

Test phase

The format of the test phase trials was deliberately differ-
entiated from the training phase trials in order to probe for
the effects of abstract category knowledge acquired by the
procedural system rather than simply stimulus-response
associations. Participants were shown two alien stimuli, one
from Category A and one from Category B, and one ship,
and were instructed to choose which alien corresponded to
the presented ship. We manipulated the color congruency
of both stimuli as a pair. Specifically, in half the trials, the
colors of both stimuli were congruent with the training color
distribution (e.g., A-warm/B-cool); in the other half of tri-
als, both stimuli were presented in incongruent colors. All
stimuli presented were novel (i.e., not previously seen in
the training task). However, note that the colors used in the
test phase were the same as the colors used in the training
phase. The stimuli were novel in the sense that particular
combinations of facial features and colors had not been seen
in the training phase, but both the facial configurations and
the colors (taken separately), had been seen in the training
phase. To avoid confusion with the training left/right config-
uration of the ships, the stimuli were stacked vertically and
response keys were u/n (upper or lower). Participants were
presented with a total of two blocks of 36 trials each (one
saucer block, one rocket block). As in the training phase,
there was no response deadline and participants were not
explicitly instructed to respond quickly.

Pairs in the congruent and incongruent conditions were
balanced for total shared features, shared diagnostic fea-
tures, shared non-diagnostic features, binned hue warmness
difference, and mean distance between colors in color space
(delta e).

Post-tests and survey questions

Colorblindness items Participants were asked to type the
numbers visible to them in a set of 5 Ishihara plates selected
to probe for deficiencies in color vision. Before any exclu-
sions, about 1% of participants responded to the Ishihara
plates in ways consistent with some form of colorblindness.
However, performance for these participants was compa-
rable to that of other participants and the main RT difference
between congruent and incongruent trials at test was similar
in colorblind and non-colorblind participants. It is likely the
case that colorblind participants were able to perceive the
differences in color distributions based on brightness dif-
ferences even though they may not have been able to per-
ceive all hue differences. For this reason, we did not exclude
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participants on the basis of their Ishihara plate responses or
self-reports of colorblindness.

Strategy use and color awareness questions Participants
were also asked to complete the following open-ended
questions:

1. Describe the rule you used to classify the aliens (in your
own words, to the best of your ability).

2. Other than the rule you were instructed to use, did you
use any strategy or rule of thumb to decide which aliens
went with which ships? (if yes, please describe briefly if
you can)

3. Did you notice anything about the colors of the aliens?
If yes, please describe below.

4. Describe what (if anything) you noticed about the col-
ors of the aliens.

5. Did you use the colors to help the aliens find their ships?
(yes/no)

As we were primarily interested in effects of implicit
sensitivity to the color distribution on categorization perfor-
mance, responses to any of these questions that suggested a
use of color to classify stimuli, or awareness of the biased
color distributions resulted in the participant being labeled
as “qualitatively aware.” As stated in our preregistered pro-
tocol, data from qualitatively aware participants were ana-
lyzed separately and not included in the main analysis of
reaction time and accuracy in the test phase. Complete par-
ticipant responses and scoring can be found in the Supple-
mental Table 2.

Explicit color knowledge task A final test for explicit
knowledge of the color-category associations was given in
the form of a classification task like the training task, but
with the cover story that now the aliens were viewed from
behind, i.e. their “facial features” were not visible, only
colors. Participants completed 16 trials (one trial for each
color plus 4 additional trials using peak colors), and then
after each classification trial, to rate their confidence in their
decision on a scale from 1 to 4 (1=guessing, 4=completely
confident).

Analysis
Participant awareness

The analysis of interaction between declarative and procedural
memory depends on an assumption that the color information
was learned procedurally only, i.e. that participants did not
develop declarative knowledge of the color-category associa-
tions. In order to satisfy this assumption, we used two methods
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to identify participants who were aware of the color-category
association (i.e., “aware participants”). The main analysis
below consists of data from only “unaware” participants.

Survey responses Participants whose responses to survey
questions indicated knowledge of the color-category asso-
ciation (n=23) and/or who answered “Yes” to “did you use
color to categorize the aliens” (n=31) were excluded from
further analysis (total n=38).

Explicit color knowledge accuracy In the “from behind”
post-test, participants were asked to classify stimuli based
on their color only. Unaware participants are expected to
be at or near chance performance on this task (EV=8/16
correct responses; SE=2). Nine participants with perfor-
mance statistically greater than chance (12/16=0.75) on this
task were identified as “quantitative aware” and were not
included in the main analysis. After these exclusions, 178
“unaware” participants were included in the main analysis.

Training phase

Accuracy analysis Mean accuracy was computed for each
participant and each block. Mean accuracy was analyzed
using a one-way repeated measures ANOVA with blocks
(1-4) as a within-subjects factor.

Reaction time analysis Mean reaction time was computed
for each participant and each block. Mean reaction time was
analyzed using a one-way repeated measures ANOVA with
blocks (1-4) as a within-subjects factor.

Test phase

Accuracy analysis Each participant’s mean accuracy by con-
dition (congruent/incongruent) was calculated separately. A
paired t-test was performed between conditions.

Reaction time data cleaning and analysis All reaction time
analyses were conducted on correct trials only. In addition, we
took several measures to mitigate the effects of outliers on our
main analysis of reaction times, as outlined in our preregistered
protocol. First, outliers at the trial-level were identified by cal-
culating each participant’s mean and SD for reaction time and
dropping trials that were 3 participant-SDs above or below
each participant’s mean RT; this step was preregistered. We
routinely exclude trials with RTs less than 200ms in RT analy-
ses because these were assumed to be mistakes, as the required
decision could not be made in such a short interval (see e.g.
Whalen et al., 1999); however, this step was not preregistered.

Next, participant outliers were identified in two ways. The first
way, which was preregistered, was to drop participants who
had unusually long or variable reaction times using cutoff
values based on pilot data RT distributions (participant-mean
RT>4.5s or participant SD RT>5s). However, it also occurred
to us that a rational alternative would have been to use the cri-
terion of participant mean RTs +/- 3SDs from the group mean
RTs; since this step was not preregistered, we analyzed the data
both ways. The direction, significance, and effect size did not
differ substantially, regardless of whether only the preregis-
tered steps were used for RT data cleaning or if additional or
alternative steps were included.

Below, we report the results of the preregistered protocol,
but results of the alternate analyses can be found in Appen-
dix A. After these exclusions, 173 participants were included
in the reaction time analysis.

After data were cleaned as described above, each partici-
pant’s mean reaction time by condition (congruent/incon-
gruent) was calculated and a paired t-test was performed
between conditions.

Stimuli, code for creating stimuli, analysis scripts, and
de-identified data (including full survey responses) can be
found at:

https://osf.io/cb3zu/.

This study was pre registered. The preregistered protocol
can be found at https://osf.io/atj5q.

Results

Task performance

Training phase

Mean accuracy (M=0.90 SD=0.29) and mean reaction time
(M=2.53s. SD=5.83s)’ on the training task improved over
training blocks, as seen in significant effects of block on
accuracy (F (3, 540)=20.73, p<.001) and reaction time (F
(3, 540)=32.07, p<.001).

Test phase

Overall performance Mean accuracy was high (M=0.967

SD=0.180). After reaction time data cleaning (see above),
mean response times were longer than in the training phase

7 These results are from analysis of the final set of 178 participants.
However, with no exclusions Accuracy M=0.88 SD=0.33; RT
M=2.40s, SD=5.83s).
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(M=3.45s SD=3.51s) reflecting the greater difficulty of the
task.

Congruent/Incongruent  accuracy  analysis Accuracy
for congruent and incongruent trials was nearly identi-

cal ((Mcongruent = 0.967, Micongruent = 0.965; ¢
(185)=0.63, p=.53).

Congruent/Incongruent reaction time analysis Partici-
pants’ RTs were significantly slower for incongruent than
congruent trials: (Mycongruent =3-274s (SD=2.484s),
M ONGRUENT 3.063s (SD=2.29s); Mprpypr =-209s
(SD=.481s); t (185)=5.93, p<.0001; effect size (Cohen’s
d)=0.18). Figure 3 shows the comparison of RTs across
condition, within participant. Figure 4 shows individual
participant differences for mean incongruent RT — mean
congruent RT. While the majority of participants have a

Training Phase
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o
o

o
IS

0.2 1

B 0 1 2 3 4
Block

10

Reaction 8
Time
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Block

Fig. 3 Results (A) Training accuracy by block; high initial accuracy
demonstrates use of the shape rule. Block 0 refers to the 12-item prac-
tice block before the four main training blocks. B Training reaction
time decreased over successive blocks. C Test accuracy by condition:
responses to color congruent trials were more accurate than incongru-
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positive difference (incongruent RT>congruent RT), some
do have a negative difference, and the size of the difference
varies across participants.

Post-tests and survey
Strategy use (self-report)

87% of participants gave some response to the question
“Describe the rule you used to classify the aliens (in your
own words, to the best of your ability).” Of these, 85%
gave a response that referred generally to the eyes and
mouth or to the parity of the eyes and the shape of the
mouth. An additional 3% referred to using a rule but did
not describe the rule. While use of the declarative knowl-
edge rule was inferred from categorization accuracy, these
responses provide additional support for our interpretation
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ent trials, but the difference was not significant. D Test reaction time
by condition: Trials in which color and shape information conflicted
(incongruent) were significantly slower than trials in which they con-
verged (congruent). (Miycongruent =2-8628, Mcongruent = 2.719s;
Myrpirr =143s, 1 (172)=4.68, p<.0001)
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Fig. 4 Individual differences in knowledge interaction effect. Each
point represents the difference in mean RT between incongruent and
congruent trials for a single participant. A black marker with error
bars representing the standard error of the mean shows the overall
mean difference across all participants (Mpppp =.143s, ¢ (172)=4.68,
p<.0001)

that shape-based classification in these participants was
supported by declarative knowledge of the complex dis-
junctive rule.

Explicit color knowledge post-test

On average, participants scored at chance on the explicit
knowledge post-test (where categorization accuracy was
based solely on stimulus color, in the absence of facial
feature information; M=0.493, SD=0.50, ¢ (182)=0.74,
p =. 461)%. Participants reported low confidence in
their categorization decisions on the task: the mean
slider response was 1.48 (SD=0.63) (on a range where
1 =guessing to 4=completely confident). Furthermore,
there was no significant difference in confidence rat-
ings for correct versus incorrect trials (M, o = 1.48;
M, =1.49; SD=0.78, ¢t (182)=0.236, p=.813), and

incorrect
no correlation between participant mean confidence and

participant mean accuracy (r=.044, p=.556)° (see Sup-
plemental Figure 4).

8 This was true regardless of whether “qualitatively aware” partici-
pants were included or excluded. The mean accuracy for “aware” par-
ticipants (n=27) was also near chance M=0.504, SD=0.595 and not
significantly different from the mean accuracy for unaware partici-
pants (M, = 0.498; M, .. = 0.504; Welch’s 1=0.169, p=.866).

naware
However, participant mean confidence was higher for the aware

participants (M, = 1.397; M, = 1.858; Welch’s #=3.755,

unaware aware
p<.001.) In addition, aware participants’ mean confidence rating
for correct trials is significantly higher than incorrect trials (M,
=1.942; M, =1.1.77; t=2.17, p=.03).

incorrect

orrect

° Nine participants scored above chance (>75% accuracy), and these

participants were labeled “quantitative aware” (analysis excluding
“quantitative aware” participants was not preregistered but can be
found in Appendix A). Only 3 participants were identified as both
“qualitatively aware” and “quantitatively aware.”

Discussion

Participants were explicitly taught a difficult disjunctive
rule for categorization of stimuli (“aliens”) based on a com-
bination of eye and mouth characteristics, and successfully
applied this rule during a training phase with feedback.
During training, stimuli in each category were presented
according to a biased color distribution, in effect creating
a probabilistic color-category association (for a precedent,
see Schoenlein & Schloss, 2022). Critically, in a subsequent
test phase without feedback, participants showed faster
categorization performance for trials in which the color-
category associations were preserved (“congruent” trials)
than on trials in which the association was violated (“incon-
gruent” trials). This reaction time effect occurred in the
absence of participants’ conscious awareness of color dif-
ferences between the categories, as assessed through ques-
tionnaire responses and performance on a color-category
task. These results provide initial evidence that declarative
and procedural learning systems can contribute to category
selection within a single trial. On correct incongruent tri-
als, participants correctly applied the explicit categorization
rule, while their performance was simultaneously slowed
by the atypical colour associated with the stimulus. Partici-
pants reported little or no knowledge of the color informa-
tion, demonstrating that the color information was learned
unconsciously and used automatically, meeting part of the
definition for procedural learning. These results cannot be
explained by current models of winner-take-all competition
between procedural and declarative learning at encoding
(McDonald et al., 2004; Mcdonald & Hong, 2013), consoli-
dation (Brown & Robertson, 2007; Galea et al., 2010), or
retrieval (Crossley & Ashby, 2015). In addition, the finding
of a reaction time difference between congruent and incon-
gruent trials in the test phase in the absence of declarative
color-category association knowledge replicates the result
of our earlier similar experiment (Kalra et al., 2024), reduc-
ing the probability that the current results are a form of Type
I error. In addition, the effect size found here!® is slightly
larger than that found in the preliminary study.

There are at least two forms of evidence that the explic-
itly-instructed rule was learned and implemented by a
declarative form of learning. In their short debrief responses,
a majority (>85%) of participants explicitly referred to the
eyes and mouth (diagnostic features), or to “the rule that
was given,” and sometimes reported verbalizable heuristics
based on the eyes/mouth rule. Furthermore, performance
accuracy in the first block of training trials was near ceiling
(Figs. 2a and 3a), suggesting that participants immediately
applied the explicitly-instructed rule from the instruction

10" In the pre-registered analysis, but see Appendix A.
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phase, rather than searching for a rule or gradually accu-
mulating information about the shape-category relation. In
addition, as all stimuli shown in the test phase were novel
(i.e. not shown in the training phase), participants could not
use memory for specific exemplars to categorize the test
stimuli (that is, the specific combinations of color and facial
features were novel in the test phase. All individual colors
and legal facial feature configurations had previously been
seen in the training phase.)

In addition, there are also multiple forms of evidence that
the color distribution information was learned procedur-
ally (and not declaratively). In their short debrief responses,
very few participants (<10%) reported any explicit knowl-
edge of the biased color distributions; those who did were
excluded from the analysis intended to show interaction
between declarative and procedural information. Addition-
ally, we found that participants were at chance when asked
to classify stimuli based on color alone, and their confidence
ratings did not significantly differ between correctly and
incorrectly classified colors (meeting the zero-correlation
criterion; Dienes & Berry, 1997). Thus, taken together, par-
ticipants in our final sample demonstrated little or no aware-
ness of the hidden color distribution, but nevertheless were
slower on incongruent trials. For these reasons, we infer that
the color distribution was learned procedurally. Despite the
fact that the reversed form of the test phase could poten-
tially disadvantage a procedural learning system (Anderson
& Fincham, 1994; Vaquero et al., 2020), we interpret the
maintenance of the effect across this reversal as evidence
of abstract learning beyond stimulus-response association
(Reber, 1993; Seger, 1994), such as the formation of a prob-
abilistic color-category stimulus space.

Our findings are consistent with previous research show-
ing that procedural encoding can take place simultaneously
and “covertly” during declarative encoding (Foerde et al.,
2006; Packard & McGaugh, 1996; Song et al., 2007). How-
ever, other previous research has demonstrated competition
at consolidation (Brown & Robertson, 2007; Galea et al.,
2010) and/or retrieval (Crossley & Ashby, 2015; Packard
& McGaugh, 1996). The results of the current study dem-
onstrate that, at least in some situations, the competition at
retrieval is not a zero-sum game: the output from one system
is not completely disregarded or discarded in the process
of decision-making. It may be the case that responses are
either facilitated when procedural knowledge and declara-
tive knowledge converge on a categorization decision, or
hindered when they diverge.

Many of the previous studies on interaction between pro-
cedural and declarative learning have focused on whether
both systems are active during encoding or retrieval, and
whether one system’s activity inhibits or facilitates activ-
ity in the other (see e.g., Freedberg, 2020; for exceptions
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see Robertson, 2022). However, the current study involves
interactions between the representations or knowledge
formed by each system, not just their relative activity. In
doing so, it presents a challenge for computational models
such as COVIS that consider only the confidence and bias
of each module’s decision, but do not consider whether the
modules’ responses converge or diverge for downstream
response selection (Ashby, Paul, & Maddox, 2011).

Conceptually, the current study employs a form of Jaco-
by’s Process Dissociation Procedure (1991). In the original
form, the PDP was used to consider the relative contribu-
tions of two processes, recall and familiarity, to recognition
performance. In our case, we are considering the contribu-
tions of procedural and declarative learning to categoriza-
tion performance. Importantly, such an approach starts with
the assumption that the two processes both contribute to
performance, an assumption that may not have been made in
previous studies. In the PDP, two conditions are contrasted:
when the two processes converge on the same response
(facilitation condition, A+B) and when the two processes
diverge (interference condition, A-B). In our case, it may
be the case that either facilitation is seen in the congruent
trials, when procedural and declarative systems indicate
the same category response, or that interference is seen in
incongruent trials, when the two systems indicate different
category responses. If only one process contributed to per-
formance, there would be no difference between conditions.
However, we observed a difference between congruent and
incongruent trials, indicating that both processes contribute
to categorization behavior. The design of the current study
does not allow us to distinguish whether either facilitation,
interference, or both facilitation and interference are occur-
ring, but it strongly suggests that at least one of these forms
of interactions does occur. Future studies could include a
“baseline” condition for comparison, which would allow
clarification on whether facilitation or interference drives
the difference between conditions.

Potential implications for basic science and
directions for future research

One potential implication of the current findings is an update
to the COVIS model of interaction between category learn-
ing systems. The current specification of COVIS imple-
ments “winner-take-all” decision-making through its gating
mechanism (Ashby et al., 2011). The gating mechanism
allows the input of only one module (verbal or implicit) to
feed forward to decision-making. Borrowing a “mixture of
experts” type gating mechanism from the ATRIUM model
(Kruschke, 1990, 2011), the COVIS model could be altered
to make it compatible with the current results. Briefly, the
gating mechanism would need to take into account the
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relative direction (sign) of each module’s decision (e.g. Cat-
egory A positive, Category B negative) in addition to the
existing confidence and bias parameters, and sum the inputs
from each module rather than selecting only one.

Another area for consideration is the developmental tra-
jectory of interaction between procedural and declarative
learning. We know that procedural and declarative learning
have different developmental trajectories, with procedural
learning maturing sooner (Finn et al., 2016). For this rea-
son, we might predict that interactions between procedural
and declarative learning in young children might show a dif-
ferent pattern than that observed in healthy, young adults,
with stronger contributions from the procedural system.
However, several studies of category learning with children
have suggested that children perseverate in using simple
rule-based strategies based on declarative learning (Huang-
Pollock et al., 2011; Rabi et al., 2015; Rabi & Minda, 2014).
The explanation proposed by these studies is that the chil-
dren are unable to inhibit the output of the declarative sys-
tem, which is consistent with the relative immaturity of
prefrontal areas responsible for inhibition as well as other
means of adjudicating between different response options
(Gogtay et al., 2004; Lenroot & Giedd, 2006; Shaw et al.,
2006). However, these studies contrasted category induc-
tion for rule-based (declarative) and information-integration
(procedural) category structures; the children had to infer
the rule rather than being told a rule before the task started.
Pure induction reflects the way naturalistic categories are
learned, but is not necessarily how categories and concepts
are typically learned in formal instructional contexts, like
classrooms. In these contexts, instruction often emphasizes
declarative knowledge without considering the role that
covertly learned procedural knowledge may play. Future
studies, such as those that adapt the current paradigm for use
with children, will be needed to fully address the issue of
developmental differences in interactions between declara-
tive and procedural learning, particularly when considering
instructional implications.

Perhaps because of the emphasis on establishing the
separateness of multiple category learning systems, little
research has investigated whether and how the representa-
tions of category information formed by each system might
interact. In the current study, we have demonstrated that
although two separate mechanisms may contribute to the
acquisition of category information, they can both influ-
ence response selection. This finding raises the question of
whether each system creates a distinct representation of the
category structure, and both of these contribute to response
selection, or whether both systems contribute to the creation
of a shared knowledge base. This “shared knowledge base”
could in fact be what is thought of as semantic memory,
but because semantic memory is grouped as “declarative” in

most memory system taxonomies, there has been little work
connecting procedural or implicit category learning with the
acquisition and development of semantic memory. There is
sadly even relatively little work connecting even declarative
category learning and semantic memory formation.

Although the current behavioural results cannot speak
to this issue, we are currently conducting a fMRI-repre-
sentational similarity analysis (RSA) study to address this
question. Because the category structures learned by each
system are slightly different, different theoretical similar-
ity matrices can be constructed which will then reflect the
contribution of each system. These theoretical matrices can
then be compared to empirical similarity matrices derived
from brain activity (Kriegeskorte et al., 2008). If the areas of
the brain in which patterns of activity (empirical similarity
matrices) correlate with the theoretical matrices for proce-
dural and declarative learning do not overlap, we can infer
that the representations formed by each form of learning are
distinct.

Finally, looking backward, rather than forward, it may be
possible to reinterpret some traditionally puzzling findings
(such as Allen & Brooks, 1991; Armstrong et al., 1983) in
the context of interaction between rule-based and similarity-
based representations of a stimulus space. Allen and Brooks
(1991) found that participant categorization decisions were
skewed by similarity along non-diagnostic (but partially
predictive) dimensions; it could be the case that this inter-
action between rule-based and similarity-based reason-
ing was an interaction between declarative and procedural
knowledge, as in our study, but to an extent that influenced
accuracy as well as response times. Armstrong et al. (1983)
demonstrated that participants would, when prompted,
gave responses that suggested a graded representation even
for categories with strict criteria (such as odd numbers).
These apparently paradoxical findings could potentially
be explained in terms of task demands that preferentially
recruit procedural or declarative knowledge for decision
making. Future research could include replications of these
classic studies with specific controls and measures in place
to monitor the relative contributions of procedural and
declarative knowledge.

Potential implications beyond basic science

One practical implication of the current findings is that in
complex, real-world situations, both declarative and proce-
dural decision-making processes may interact. For example,
in formal instruction, students are often given rules or nec-
essary and sufficient criteria for category membership (e.g.,
mammals have hair and produce milk to feed offspring).
However, even when students are given such a rule or cri-
teria, if they experience only a biased selection from the
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space of possible category members (e.g. only dogs and cats
as mammals), they may have difficulty transferring their
knowledge of mammals in general to unfamiliar exemplars
(whales, armadillos). Our main finding is consistent with an
emerging body of evidence that supports the idea of sam-
pling broadly from the example space during instruction
to facilitate later transfer (Carvalho et al., 2021; Nosofsky
et al., 2018). However, other studies have suggested that
more narrow sampling, particularly focused on a catego-
ry’s central tendency may be beneficial for learners (Bow-
man & Zeithamova, 2020, 2023; Homa & Vosburgh, 1976;
Homa & Cultice, 1984). Further research will be required
to determine when and why narrow versus broad sampling
is beneficial for robust learning and transfer. Considering
interactions between procedural and declarative knowledge
may clarify the conditions under which broad versus narrow
sampling is beneficial in instruction.

Furthermore, our results suggest that individuals may
vary in the degree of interaction between procedural and
declarative knowledge in decision making (Fig. 4). In addi-
tion to being an interesting contribution to basic science,
this finding may also have applications in educational set-
tings. It may be the case that for some students, for example
those with atypical executive function (e.g., low working
memory, ADD/ADHD), strategic instructional domain
space sampling may play an especially important role in
facilitating their abilities to apply rules and recognize cat-
egory members. We are currently investigating the role of
such individual-level variables in predicting the knowledge
interaction effect.

Our results also provide insights into the formation of
stereotypes and potential ways to counteract learned nega-
tive associations. Similar to many studies using the Implicit
Association Test (Greenwald & Banaji, 2017), the current
findings provide further experimental evidence that behav-
ior is often influenced by a combination of implicit repre-
sentations based on accumulated experiences and explicit
understandings or beliefs. Generally, the IAT reveals reac-
tion time differences whereby pairing a social group with
traits that are stereotypically associated with that group (e.g.,
male — engineer) results in faster reaction times than pairing
with traits that are stereotypically not associated (e.g., male
— nurse) (Banaji & Hardin, 1996). Importantly, these reac-
tion time differences are found even when individuals hold
explicit beliefs that contradict the stereotypes (Greenwald
& Banaji, 1995; Greenwald et al., 1998); somehow, expo-
sure to stereotypes in the environment (for example through
media portrayals) creates an implicit bias that can operate
despite an individual’s best intentions to hold unbiased
attitudes towards particular social groups. Our findings are
consistent with this general model of interaction between
implicit and explicit representations. While many successful
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interventions for counteracting implicit bias recruit explicit
reasoning and declarative knowledge (Devine et al., 2012;
Forscher et al., 2019), our findings support suggestions that
interventions that recruit procedural learning mechanisms,
such as the presentation of counter-stereotypical exemplars,
may be an important complement (FitzGerald et al., 2019;
Forscher et al., 2019), since both procedural and declarative
knowledge can contribute to real-time decision making.

Limitations

On that note, one important limitation of the current study is
low ecological validity. Although we have suggested practi-
cal implications, we hasten to point out that the paradigm
used in this study bears only a faint resemblance to learn-
ing in a classroom setting or making decisions that may be
affected by social bias. In particular, fewer exemplars can be
presented in a classroom or other real-world situations, and
they are usually distributed more widely across time and
without immediate feedback. It is possible that the selection
of examples from the space creates an implicit representa-
tion that could conflict with a rule-based category defini-
tion in real-world learning settings, just as in our laboratory
paradigm, but this must be confirmed empirically in studies
with greater ecological validity.

Another limitation is related to precise interpretation of
the results. Although we successfully demonstrated that
reaction times were faster when the responses of each sys-
tem converged, the design of the current study does not
allow us to infer whether this is due to facilitation in congru-
ent trials or interference in incongruent trials. Future studies
could be designed to include a baseline condition for com-
parison to aid in distinguishing these possibilities.

Finally, while we have taken several steps to ensure that
the color-category association was not learned by a declara-
tive mechanism, future studies could go further to estab-
lish affirmatively that it was in fact learned by a procedural
mechanism. One way to do this would be to use a delayed
or deferred feedback condition during training; this should
“block” procedural learning (see e.g. Maddox et al., 2003;
2004 Maddox & Ing, 2005; Foerde & Shohamy, 2011a;
Smith et al., 2014, 2018), thereby supporting the interpreta-
tion that in the immediate feedback condition, it is indeed
a procedural process that allows learning of the color-cate-
gory association.

Conclusion

In the study presented here, we have demonstrated a novel
form of interaction between procedurally-learned and declar-
atively-learned category information in decision-making.
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This form of interaction is not predicted by previous studied
or accepted models of interaction between memory systems.
While much future work is required to determine precisely
when and how such interaction takes place, we have at least
provided a plausible example of procedural and declarative
knowledge being used simultaneously to complete a task.
Future studies may reveal the extent to which such interac-
tion underlies phenomena such as expert performance, lan-
guage learning and use, and tool use, among others.
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