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Abstract
Statistical learning (SL) is a powerful mechanism that supports the ability to extract regularities
from environmental input. Yet, its neural underpinnings are not well understood. Previous EEG
studies of SL have found that the brain tracks regularities by synchronizing its activity with the
presented stimuli - a phenomenon known as neural entrainment. However, EEG lacks the
spatial resolution to unveil the specific brain regions where this process takes place. In our
study, 18 patients with drug-resistant epilepsy who were implanted with intracranial electrodes
for presurgical investigation listened to a continuous speech stream containing embedded
trisyllabic words. Neural entrainment was measured at the syllable and word frequencies, with
the latter providing an online index of learning. SL was further assessed through both explicit
and implicit behavioral measures. Behaviorally, we found evidence of learning at the group
level in both tasks. At the neural level, our analyses revealed three temporal tuning profiles:
25% of contacts showed entrainment at the syllable frequency, 11% of contacts showed
entrainment at both the word and syllable frequencies, and 4% showed entrainment only to
the word frequency. Word entrainment, indicating sensitivity to word structures, was most
commonly found in auditory and language-related regions, including insula, middle temporal
gyrus (MTG), superior temporal gyrus (STG), and supramarginal gyrus. In contrast, evidence for
neural entrainment in the hippocampus was weak. Overall, these results support the idea that

speech-based statistical learning is largely supported by modality-specific brain regions.
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Introduction

The external world bombards us with a continuous flow of sensory input. As complex as
this input may be, it contains structure in the form of regularities that repeat over time.
Statistical learning (SL) is a fundamental learning mechanism that supports the extraction of
such regularities from the environment based on their distributional patterns across time and
space (Frost et al., 2019). In one of the first demonstrations of SL, Saffran and colleagues (1996)
exposed infants to a continuous speech stream containing repeating nonsense words that
offered no acoustic cues to indicate word boundaries (i.e. no pauses or tone changes between
words). As such, the only cues to discover word boundaries were the co-occurrence statistics
between neighboring syllables - namely, that syllables within words occurred together more
often than syllables across words. Following only two minutes of exposure, a looking-time test
revealed that infants were able to distinguish the words in the stream from recombined foil
items, suggesting that they had become sensitive to the statistical regularities in the input.
Numerous studies have since replicated and expanded upon this initial finding (Frost et al.,
2019; Isbilen & Christiansen, 2022), demonstrating that SL is not limited to auditory speech
segmentation, but also supports the extraction of visual (Fiser & Aslin, 2001, 2002a, 2002b),
tactile (Conway & Christiansen, 2005), and non-linguistic auditory patterns (Moser et al., 2021;
Saffran et al., 1999). Further, in addition to infants (e.g. Choi et al., 2020; FI6 et al., 2019),
evidence of statistical learning has also been found in children (e.g. Arciuli & Simpson, 2011;
Moreau et al., 2022; Saffran et al., 1997), adults of different ages (e.g. Saffran et al., 1997;
Saffran, Newport, et al., 1996; Wang et al., 2023), and even non-human species (e.g. Arnon et

al., 2025; Boros et al., 2021). Thus, statistical learning is currently conceptualized as a universal
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process that likely supports many different aspects of perception and cognition (Bogaerts et al.,
2020; Sherman et al., 2020).

While SL studies have traditionally focused on assessing the behavioral outcomes of SL
(Isbilen & Christiansen, 2022), in recent years there has been a growing interest in elucidating
the neural mechanisms active during the learning process itself. Studies using fMRI have
commonly found the engagement of modality-specific sensory regions in SL. For instance,
studies using visual stimuli have found activation in occipital areas, including lateral occipital
cortex and ventral occipito-temporal cortex (Karuza et al., 2017; Turk-Browne et al., 2009).
Other studies using linguistic auditory stimuli found activation in the superior temporal gyrus
when participants were exposed to artificial language streams, as contrasted with a control
condition (Cunillera et al., 2009; Karuza et al., 2013; McNealy et al., 2006). Activation was also
observed in other regions along the temporal cortex, including middle temporal gyrus (Karuza
et al., 2013; McNealy et al., 2006), posterior temporal gyrus (Schneider et al., 2024) and

transverse temporal gyrus (McNealy et al., 2006). Further, a recent study found engagement of

the left posterior temporal gyrus during a linguistic auditory SL task and a passive story listening

task, but not during a non-linguistic auditory SL task (Schneider et al., 2024). This suggests that
linguistic auditory SL may recruit hubs within the language network that are not engaged by
non-linguistic auditory stimuli, possibly reflecting domain specificity along with modality
specificity in SL.

In addition to modality- and domain-specific cortical areas, there are a number of
regions that appear to support SL across modalities and domains. For example, both visual and

auditory SL studies have found engagement of the basal ganglia, particularly the caudate
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nucleus (Karuza et al., 2013; Turk-Browne et al., 2009) and putamen (McNealy, et al., 2006;
Karuza et al., 2013, 2017), which is perhaps not surprising given the noted similarities between
SL and implicit learning (Batterink et al., 2019; Christiansen, 2019; Perruchet & Pacton, 2006).
The inferior frontal gyrus (IFG), a region that has been implicated in sequential structure
learning (e.g. Petersson et al., 2012; Schapiro et al., 2013), has also been implicated in visual
(Turk-Browne et al., 2009), linguistic auditory (Karuza et al., 2013), and non-linguistic auditory
SL (Abla & Okanoya, 2008).

Yet another important brain region that has attracted considerable interest as a
potential domain-general hub of SL is the hippocampus. Evidence from a neural network model
that simulates known properties of the hippocampus supports the idea that this structure may
contribute to SL (Schapiro et al., 2017). Within this computational model, the simulated
trisynaptic pathway, which projects from entorhinal cortex to dentate gyrus and then through
CA3 and CA1, was able to support the generation of non-overlapping representations of highly
similar episodes (a process known as pattern separation). Conversely, the monosynaptic
pathway, which projects from entorhinal cortex directly to CA1, was demonstrated to support
learning of regularities across episodes (statistical learning). While the evidence for the specific
involvement of the monosynaptic pathway in SL is still limited (but see Wang, Rosenbaum, et
al., 2023 for discussion), broader evidence for hippocampal involvement in statistical learning
comes from numerous fMRI studies. Two studies found greater BOLD activation in the
hippocampus to structured versus random visual sequences (Ellis et al., 2021; Turk-Browne et
al., 2009), while a study using visual-spatial stimuli showed that activation of the hippocampus

and other MTL regions was associated with behavioral performance in a subsequent
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recognition task (Karuza et al., 2017). Further, an fMRI study using multivariate pattern analysis
found that exposure to pairs of images that appear sequentially (image A always followed by
image B) led to an increase in representational similarity of corresponding activation for these
two items in the hippocampus as learning took place (Schapiro et al., 2012). However, so far,
activation of the hippocampus has generally not been found in the auditory-linguistic domain
(Karuza et al., 2013; McNealy et al., 2006, 2010; Orpella et al., 2022; Schneider et al., 2024),
suggesting that hippocampal involvement could be limited to visual SL paradigms.

Alongside studies that have focused on understanding the brain regions involved in SL,
another line of work has used neural entrainment as an online index of SL. Neural entrainment
can be defined broadly as the temporal alignment of neural activity with regularities in a
stimulus stream (Obleser & Kayser, 2019). By presenting individual stimuli within a structured
input stream at a fixed rate, neural entrainment can be induced at frequencies corresponding
both to the individual stimuli (e.g., syllables) and to the underlying statistical structure (e.g.,
words). Neural entrainment at the frequency of statistical regularities, in the absence of
sensory cues to their boundaries, is interpreted to reflect the perceptual binding of items into
structured word units (e.g. Batterink & Paller, 2017). Numerous electroencephalography (EEG)
studies of linguistic SL have indeed found neural entrainment at the frequency of the
embedded words in continuous speech, which generally tends to increase over the course of
learning (see Sjuls et al., 2023 for a review). In addition, a subset of these studies have found
that entrainment to words correlates with performance on implicit and/or explicit behavioral
measures of learning (e.g. Batterink, 2020; Batterink & Paller, 2017, 2019; Buiatti et al., 2009;

Choi et al., 2020). Neural entrainment to the statistical structure has also been shown to
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correlate with individual language-related abilities, including phonological awareness (Zhang et

al., 2021) and spelling skills (Ringer et al., 2024), suggesting that sensitivity to structure at the

oNOYTULT D WN =

neural level may relate to other aspects of language more broadly.

1 A handful of studies have incorporated neural entrainment approaches with intracranial
13 EEG (iEEG), providing insights into where in the brain entrainment occurs. Henin et al., 2021
recorded iEEG data in patients with epilepsy who were presented with both auditory and visual
18 statistical streams and found entrainment to words in modality-specific sensory cortices (i.e.
temporal cortices) as well as parietal and frontal regions including inferior frontal gyrus (IFG).
23 No entrainment effects were found in the hippocampus. An additional representational
similarity analysis revealed, however, that the hippocampus uniquely represents the identity of
28 the bound statistical units, showing more similar patterns of neural activity for stimuli that

30 belonged to the same statistical unit than those that did not. Another iEEG study examined

33 visual SL of both exemplar-level and category-level regularities (Sherman et al., 2023). In the

35 exemplar-level condition, six exemplar images of natural landscapes were organized in three
arbitrary pairs (e.g, an image of a canyon followed by a mountain), whereas in the category-

40 level condition, regularities occurred at category level (e.g., unique images of canyons were
presented for each trial). Significant neural entrainment at the pair frequency was found to

45 both types of regularities throughout visual cortex, in addition to frontal and temporal cortex,
but it was not possible to examine the involvement of the hippocampus due to insufficient

50 coverage. An additional iEEG study examined the contributions of the hippocampus and

52 auditory cortex in a linguistic auditory SL task (Ramos-Escobar et al., 2022). Results indicated

55 increased spectral power at the syllable frequency in auditory cortex while the hippocampus
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showed increased power at the word frequency, suggesting that these two regions process
different levels of regularities.

Taken together, results from previous studies have provided crucial insights into which
brain structures support SL and how the brain rapidly tracks statistical regularities. However,
due to limitations of any given neuroimaging method and conflicting results across studies, the
involvement of the hippocampus in SL remains unclear, particularly for auditory linguistic
stimuli. Further, prior iEEG studies have generally not demonstrated behavioral evidence of
learning in their patients. Specifically, Sherman and colleagues (2023) did not include any
behavioral measures, while the patients in the studies by Ramos-Escobar et al., 2022 and Henin
et al., 2021 performed at chance on a 2AFC recognition measure. Henin and colleagues also
assessed patients’ reaction times on a one-back cover task during exposure, and found
generally faster RTs to structured compared to random exposure streams, though these overall
faster RTs cannot necessarily be taken as evidence of regularity learning per se. In the absence
of behavioral evidence, it is not clear whether the neural entrainment effects found in these
studies can be safely attributed to the learning process. Moreover, given theoretical discussions
about a potential role of the hippocampus that may be limited to the explicit retrieval of
statistical regularities, inclusion of both implicit and explicit behavioral measures would help
constrain interpretation of entrainment effects.

In the current iEEG study, we aimed to contribute to our understanding of the SL
process by characterizing which brain regions show sensitivity to online statistical structure in
input. To address limitations from previous studies, we recruited a sample of patients with

epilepsy who had ample electrode coverage of the hippocampus (in addition to other regions)
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and included sensitive behavioral measures to assess both implicit and explicit learning
outcomes of SL. We presented patients with a continuous speech stream that contained four
embedded trisyllabic words. With this set-up, entrainment to syllables provides an index of
sensory-level processing, and entrainment to words offers an index of SL (Batterink & Paller,
2017; Henin et al., 2021). After the exposure phase, SL was assessed explicitly through a
familiarity rating task and implicitly through a reaction-time-based target detection task. Based
on prior evidence of the engagement of modality-specific sensory regions in SL, we predicted
that primary and associative auditory regions would show significant neural entrainment to
both the syllable and word frequencies. Further, based on the results from some fMRI (Karuza
et al., 2017; Schapiro et al., 2012; Turk-Browne et al., 2009), lesion (Covington et al., 2018;
Schapiro et al., 2014), and iEEG studies (Ramos-Escobar et al., 2022), in addition to the
computational model developed by Schapiro et al., (2017), we predicted that entrainment to
the word frequency would be observed in the hippocampus. Lastly, based on the findings from
previous fMRI studies using linguistic auditory stimuli on their SL paradigms (Cunillera et al.,
2009; Karuza et al., 2013; McNealy et al., 2006; Schneider et al., 2024) and on literature on
language lateralization more broadly (Fedorenko et al., 2024), we predicted that neural
entrainment to the word frequency would be lateralized to the left hemisphere in regions
within the language network, particularly temporal cortices. We also expected to observe
significant evidence of SL on our implicit and explicit behavioral tasks, allowing us to confirm

that learning occurred in the majority of patients.
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Methods

Participants

We tested 18 patients with drug-resistant epilepsy (8 women; age range: 19-51; mean
age = 31.2 years) who had undergone implantation of intracranial depth electrodes (i.e.
stereoelectroencephalography or sEEG) for presurgical investigation (see Table 1 for patient
information). Patients were recruited from the Epilepsy Monitoring Unit at University Hospital
in London, ON, Canada and provided signed informed consent according to Western
University’s Research Ethics Board. Sample size was determined by previous iEEG studies
(Henin et al., 2021; Sherman et al., 2022; Sherman et al., 2023) and patient availability during
our data collection period (July 2023 to November 2024). All patients completed the four

experimental tasks without interruptions.

Table 1: General patient information

Subject ID Age Sex Handedness N. contacts
1 25 F R 104
2 19 F R 123
3 51 F R 154
4 39 M L 97
5 34 F R 126
6 20 M R 118
7 35 F R 104
8 23 M R 121
9 24 F R 129

10 36 M R 132

11 27 F R 117

12 25 M R 146

13 26 M R 128
10
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14 26
15 25
16 39 116
17 51 135
9 18 36 M R 154

10 Note: M = male, F = female, R = right, L = left. Number of contacts indicates the electrode contacts that went into further stages
11 of analyses after preprocessing (see below).

126
131
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18 Stimuli

20 The structured language consisted of 12 unique syllables originally used by Batterink &
23 Paller (2019). The syllables were recorded by a male native English speaker who spoke with

25 neutral intonation. Each syllable was spoken in isolation to avoid co-articulation between
syllables and had an approximate duration of 220-250 ms from onset to offset. Each syllable

30 was extracted into its own sound file, with the beginning of each sound file coinciding with the
onset of the syllable. These 12 syllables were arranged to form four trisyllabic nonsense words
35 (bafuko, regeme, fetisu, rupuni), used for the structured exposure stream and subsequent tasks.
37 A second set of stimuli for the random exposure task consisted of 12 additional syllables (bi, bu,
40 da, do, go, ku, la, pa, pi, ro, ti, tu), created using Google Cloud’s text-to-speech synthesizer

42 (Google Cloud, n.d.). We note that these syllables, while synthesized, sounded very similar to
45 natural human-produced speech. We chose to create the syllables for the random condition

47 with a speech synthesizer because it offered an efficient, straightforward, and well-controlled
way to match the structured syllables on features such as syllable consistency, articulation, and
52 pitch. Syllables were produced by a female voice to minimize any interference with the

structured stimuli set and were of similar duration to structured syllables (220-250 ms).

59 11
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Syllables were presented in pseudorandom order to create the random exposure stream, which
served as a control condition for the structured exposure stream.
Experimental procedure

All patients performed the four tasks in the same order (see Figure 1). The tasks were
carried out on a desktop computer placed on a portable cart designed for research testing.
Structured exposure task

Patients were instructed to listen to an “alien” message that researchers needed help to
decipher and, importantly, they were not told that the audio contained four words, nor that the
words were trisyllabic. Patients then listened passively to a continuous stream made up of the
four trisyllabic words (bafuko, regeme, fetisu, rupuni), concatenated in a predefined
pseudorandom order with the constraint that the same word could not appear consecutively. In
order to enable neural entrainment analyses, the individual syllables in the speech stream
appeared at a fixed rate of 300 ms (3.33 Hz). Consequently, the trisyllabic words appeared at a
rate of 900 ms (1.11 Hz). Each word appeared 90 times throughout the speech stream, resulting
in a total duration of 5.4 minutes. Critically, there were no pauses or auditory cues between
words. Thus, the only indication of word boundaries were the statistical co-occurrence
regularities among the syllables.
Target detection task

This task was designed as an implicit measure of patients’ knowledge of the statistical
regularities present in the structured exposure, as it does not require the intentional retrieval
of the learned regularities. In this task, participants were asked to detect specific target

syllables as quickly as possible, which were embedded within shorter snippets of the artificial

12
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language. Because syllables that occur in later (i.e., second and third positions) within a word
are more predictable, they should elicit faster reaction times (RTs) than syllables in the first
position (Batterink et al., 2015, 2019; Batterink & Paller, 2017; Wang, Kohler, et al., 2023).

Prior to the beginning of each stream, the target syllable for that given stream (e.g. “re”)
appeared written on-screen and was played twice. The stream was then initiated, and
contained the 4 words from the structured language repeated 4 times each in a pseudorandom
order. The written form of the syllable remained on screen throughout the duration of the
stream. Each stream contained 4 targets and, across the task, a total of 36 streams were
presented, organized into three blocks. Each of the 12 syllables of the stimulus inventory served
as the target for a stream 3 times. This yielded a total of 144 targets, 48 in each triplet position
(1t 2nd and 3d). Stimulus timing parameters were identical to those in the Exposure task,
resulting in an individual stream duration of 14.4 seconds. Block order was randomized across
participants.

Before starting the task, patients completed two practice trials that used a different
voice and different syllables from the main task. After each practice trial, the average reaction
time and number of hits was shown on screen. No feedback was given on the main task.
Familiarity rating task

This task assessed patients’ explicit recognition of the word structures. Here, patients
were presented with three different types of word structures: words, partwords, and
nonwords. Words were the same ones that appeared in the two previous tasks: bafuko,

regeme, fetisu, rupuni. Partwords were reconfigured foils that had two syllables from the same

13
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word along with a syllable from a different word! (e.g. bafu+ni), and nonwords were made up
of syllables taken from three different words (e.g. fe+pu+ko). There were 12 unique trials
overall (four words, four partwords, and four nonwords). On each trial, patients listened to
either a word, partword or nonword, and were then instructed to indicate how familiar it
sounded to them on a scale from 1 to 4, with 4 being the most familiar. SL is indexed by higher
ratings to words compared to partwords and nonwords.
Random exposure task

As in the structured exposure task, the 12 syllables created for the random condition
were presented at a fixed rate of 300 ms (3.33 Hz). However, the syllables were not arranged
into words and were instead presented in a pseudorandom order with no underlying statistical
structure. Here, the only constraint was that the same syllable could not appear consecutively.
Each syllable was repeated 90 times, resulting in a total duration of 5.4 min. As in the
structured exposure task, participants passively listened to the speech stream without
interruptions or cover tasks.

All experimental tasks were presented using PsychoPy (Peirce et al., 2019).
iEEG recordings

iEEG data were collected using NATUS NeuroWorks EEG Software (Natus Medical
Incorporated, n.d.) with a sampling rate of 2048 Hz. The signals were recorded from Ad-Tech
Medical Instrument Corporation depth electrodes for sEEG. Electrodes were 0.86 mm in

diameter, and each electrode had 10 contacts/channels with 3-, 4-, 5-, or 6-mm spacing in

1 One of the part-words contained the two syllables from an original word, but these two syllables were presented
in the wrong order (rusuti instead of rutisu).

14
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between contacts. During data acquisition, signals were referenced to a subdermal electrode
implanted at the top of the head (frontoparietal galea). A separate channel was used to insert
markers (or “triggers”) that aligned the stimuli from our experimental tasks with the iEEG
recordings. More specifically, a pulse was sent to the trigger channel at every syllable onset in
both exposure conditions (structured and random). The location of electrodes was based solely
on each patient’s clinical needs without consideration of research goals of this or any other
research study.
iEEG data preprocessing

Current analysis of the iEEG recordings was limited to the structured and random
exposure conditions. All preprocessing was performed using the EEGLAB toolbox (version
2023.0) in MATLAB (version 2023b). First, the data were downsampled to 512 Hz. The pulse
peaks from the trigger channel corresponding to syllable onsets were identified with a peak-
finding function in MATLAB and marked to create events in the data. The data were then notch-
filtered at 60 Hz and its first three harmonics (120 Hz, 180 Hz, 240 Hz), and band-pass filtered at
0.2-250 Hz with the pop_eegfiltnew function in EEGLAB. A baseline correction was applied using
the pop_rmbase function. Electrode contacts localized in cerebrospinal fluid and skull, as well as
empty channels, were removed. Then, the data were visually inspected and any contact
showing excessive noise was also removed. From a total of 2410 initial electrode contacts
across participants (M = 133.9 per participant, range = 110-160), 149 were removed (M = 8.28,
range = 1-17). The final dataset consisted of 2261 electrode contacts, including 813 within gray
matter, 1334 within white matter, 107 crossing gray and white matter, and 7 crossing gray

matter and CSF (see Appendix A for overall coverage across the brain).

15
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We opted to include data from all the above contacts, given that even contacts classified
as fully within white matter are often near the boundary of gray matter and thus record activity
that has spread from these neighbouring gray matter regions (Mercier et al., 2022). We also
note that electrode contacts distant from grey matter were categorized as “Unclassified” and
therefore did not contribute to region-specific analyses. We nonetheless conducted a
supplementary analysis that focuses only on gray matter contacts (see Appendix B) and found
very similar results to our main analysis.

Given that noise artifacts spanning multiple channels that would warrant epoch removal
are rare in iEEG recordings, all epochs were maintained in the datasets without epoch-wise trial
rejection. The data were re-referenced to the common average of the remaining contacts
across all electrodes using the pop_reref function. Finally, using the events created from the
trigger channel, the data were segmented into nonoverlapping epochs of 10.8 seconds, time-
locked to the onset of every 36 syllables (12 words in the structured condition), yielding a total
of 30 epochs in each condition.

Electrode localization

All steps pertaining to electrode localization were performed by the clinical team at the
Epilepsy Monitoring Unit at University Hospital in London, ON. The processing pipeline involved
electrode contact localization, brain tissue segmentation, and atlas fitting. First, the location of
electrode contacts was performed semi-automatically in 3D Slicer using the SEEG Assistant
module (Narizzano et al., 2017). The entry and target points of each electrode were manually
defined on the post-operative CT image. These entry/target labels were then provided to the

SEEGA algorithm, which automatically segmented the individual electrode contacts. Then, brain

16
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tissue segmentation and atlas fitting were carried out in order to obtain information on the
particular areas of the brain that individual electrode contacts were localized in. For this step,
the pre-operative T1 MRI scans were non-linearly registered to the Montreal Neurological
Institute (MNI) template (Fonov et al., 2009, 2011) using NiftyReg (Modat et al., 2010). Then, an
anatomical mask was generated by applying the inverse transform to the T1 scan using the
antsApplyTransforms algorithm from Advanced Normalization Tools 2.2.0 (Tustison et al.,

2021).

Data analysis
Behavioral data

Target detection task.

For each patient, average RTs were calculated for the syllables in the first, second, and
third position within words. Keyboard responses were considered “hits” if they occurred within
a 0—1200 ms time-window after the onset of the target syllable (a criterion employed in prior
studies: Batterink & Paller, 2017, 2019; Wang, Kohler, et al., 2023; Wang, Rosenbaum, et al.,
2023). All other responses were considered false alarms and were not included in RT analyses.
In addition to reaction time, a “hit rate” was calculated as the number of correctly detected
targets divided by the total number of targets. Finally, the total number of false alarms was also
computed.

To examine whether each patient’s RT facilitation was greater than what would be
expected by the null hypothesis of no RT facilitation due to SL, we first calculated a “RT

prediction score” (Batterink & Paller, 2019) by subtracting the average RT to syllables in the

17
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third position from the RT to syllables in the first position and dividing the difference by the
average RT to the syllables in the first position: (avRT1 — avRT3) / avRT1. This computation
adjusts for potential differences in baseline RTs between individuals, expressing facilitation to
predictable targets as a proportion of response times to the word-initial (least predictable)
syllable targets. Then, we randomly shuffled the syllable position labels in our data and
recalculated the RT prediction score. We repeated this shuffling process for 1000 iterations to
create a null distribution of RT prediction scores for each patient. These shuffling analyses were
performed in Python (version 3.9.13) with the random seed set as 12345. Individual patients
were considered to show significant RT facilitation if their true RT facilitation score exceeded
the 95th percentile of the null distribution. Finally, to assess learning at the group level, a
repeated-measures ANOVA was conducted with syllable position (1-3) as the within-subject
factor. ANOVAs were conducted in JASP (version 0.18).

Familiarity rating task.

Average familiarity ratings were calculated for each word type (word, partword, and
nonword). To assess learning at the group level, a repeated-measures ANOVA was conducted
with word type (word, partword, nonword) as the within-subject factor. Due to the low number

of trials in this task, we were unable to perform null hypothesis testing at the individual level.

iEEG data
Our neural entrainment analyses were based on the two exposure tasks (structured and
random conditions). We defined two frequencies of interest: the frequency of the individual

syllables (3.33 Hz) and the frequency of the embedded words in the structured condition (1.11

18
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Hz). Entrainment at the syllable frequency reflects sensory processing of the raw auditory input
and was expected to appear in both exposure conditions. Entrainment at the word frequency,
on the other hand, reflects processing of the statistical word structures and was therefore
expected at significant levels only in the structured condition (Batterink & Paller, 2017, 2019).
Neural entrainment was quantified by calculating inter-trial phase coherence (ITC) across
epochs within each condition. The Fast Fourier transform (FFT) was applied to each epoch to
decompose the signal into its frequency components, and ITC was then computed across the 30
epochs across frequencies, including each frequency of interest (word and syllable). ITC was
computed separately for each individual electrode contact.

Initial characterization.

As a first step to characterizing which individual electrode contacts in each patient
showed significant entrainment at our frequencies of interest, we generated surrogate data to
contrast the ITC values against the null hypothesis of non-entrained neural activity. To do so,
we generated 1000 surrogate datasets for each patient, for each condition, in which we
shuffled each epoch onset by a random interval between -900 ms and 900 ms from the actual
epoch onsets (following Moreau et al., 2022). By altering the precise temporal consistency
across epochs, we eliminated the alignment between the neural activity and our stimuli, thus
effectively simulating a scenario of non-phase-locked neural activity. Then, the ITC at each
frequency bin was recomputed for each of the 1000 iterations, resulting in a null distribution of
ITC values. The p-values for the word frequency and the syllable frequency were computed by
calculating the proportion of iterations in which the surrogate ITC exceeded the true (observed)

ITC, such that lower p-values reflect stronger observed entrainment relative to the null. The p-
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values were subjected to the false-discovery rate (FDR) correction for multiple comparisons at
the electrode contact level, using a significance level of 0.05. All neural entrainment analyses
were performed in MATLAB (version 2023b) with the random seed set as 12345.

Linear mixed-effects modeling.

Next, as a more comprehensive approach to characterizing entrainment effects at the
group level, we ran linear mixed-effects (LME) models, which can be used to account for the
hierarchical grouping of electrodes within subjects and the unequal coverage of brain regions
across subjects, thus guarding against individual subjects driving the effects (Mercier et al.,
2022). Prior to fitting the models, we z-scored each electrode contact’s raw ITC (for each
frequency in each condition) against the surrogate (shuffled) data to normalize ITC across
electrode contacts and participants, producing zITC scores that were used as our dependent
measure. Analyses were conducted using the LME4 package in R (version 1.1-37) (Bates, et al.
2015).

First, to assess the effect of condition (structured vs. random) on neural entrainment at
our two frequencies of interest, we fit separate models for the word frequency and the syllable
frequency with the structured condition coded as the reference. Both of these models included
subject as a random effect and electrode as a nested random effect within subject to account
for the different electrode configuration of each participant (zITC ~ Condition + (1 |
Subject/Electrode)). We expected to observe a significant condition effect for zZITC-Word,
indicating overall stronger entrainment at the word frequency in the structured as compared to
the random condition across electrodes and subjects. Next, to assess which regions showed

significant entrainment to the word frequency within the structured condition, we fit a
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separate model for zITC values at the word frequency within the structured condition (zITC ~
Region + (1 | Subject))?. Region was sum-coded (contr.sum) using the car package in R (Fox &
Weisberg, 2019). This analysis highlights which brain regions are especially responsive to the
statistical structure of the speech stream, characterizing which ones show stronger (or weaker)
word entrainment relative to the average entrainment estimates across all brain regions. As a
follow-up, to characterize whether entrainment within each region was significant (as assessed
by zITC > 0), we used the emmeans package in R (Lenth, 2025) to extract each region’s
estimated marginal mean and then conducted one-sample t-tests against zero (two-tailed).

Lateralization effects.

Given the linguistic nature of the task, we hypothesized that neural entrainment to
words would be left lateralized in some brain regions. To examine hemispheric lateralization in
entrainment to the word frequency in the structured condition, we first conducted a Chi-square
test to assess whether the number of electrode contacts showing significant entrainment was
greater than would be expected by chance in either the left or right hemisphere. We included
only the brain regions that had sufficient coverage and word-entrained electrode contacts to fit
the assumptions of the Chi-square test (insula, MTG, STG, and supramarginal gyrus). These
analyses were conducted in Python (version 3.9.13). Next, following the same approach as in
our main analysis, we used linear mixed-effects models to further examine lateralization effects

in these four regions. We fit a model for each region separately using zITC values within the

2 Note that we did not include Electrode as a nested factor here as there was only one observation per electrode
contact in this subset of the data.
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structured condition (zITC ~ Laterality + (1 | Subject))?, with right hemisphere coded as the
reference.

Time course of neural entrainment.

To explore how neural entrainment at our two frequencies of interest changed over the
course of exposure, we used a sliding time-window analysis to study these changes at a fine-
grained scale (as in Batterink & Choi, 2021). We grouped each patient’s data into “bundles” of 5
epochs each and recomputed the ITC for the epochs within each bundle, following the same
procedure used in our main neural entrainment analysis. We then slid the bundle by one epoch
and calculated the ITC for this new bundle. This process was repeated until the sliding bundle
reached the last epoch, such that consecutive bundles contained epochs 1-5, then 2-6, then 3-
7, and so on, finalizing in 26-30. Then, for each patient, we calculated a linear slope using
MATLAB's polyfit function, representing the trajectory of ITC over time at the syllable frequency
and word frequency, separately. To examine whether entrainment systematically increased or
decreased over time at the group level, we conducted one-sample t-tests to determine whether

the mean slope at each frequency significantly differed from zero.

Results
Behavioral results
Target detection task
Overall, patients showed the expected decrease in RT as a function of syllable position
(Figure 2A), reflecting facilitation due to statistical learning (Effect of Syllable Position: F(2, 32) =

22.18, p <.001, n2 =.581; linear contrast: p <.001). Nearly all patients (16 out of 17 analyzed
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datasets) showed this trend at least numerically. Note that one patient had to be excluded from
this analysis due to abnormally poor target detection performance and excessive false alarms
(hit rate = 53.5%, number of false alarms = 99).

Patients achieved an overall average hit rate of 72.2%, which represents an acceptable
level of performance, albeit somewhat lower than hit rates reported for neurotypical
populations in which testing occurred outside of a clinical setting (89.1% in Batterink & Paller,
2017; 83.0% in Batterink & Paller, 2019; 87.6% in Wang, Kohler, et al., 2023), and those
observed in older adults (88.6% in Wang, Kohler, et al., 2023). The mean number of false alarms
across the task was 20.71 (range = 5 to 43).

Finally, null hypothesis testing at the individual level showed that 11 out of 17 patients
had significant learning as evidenced by RT prediction scores that exceeded the 95th percentile
of the null distribution. These results indicate that the majority of patients showed evidence for
implicit statistical learning, as reflected in their robust RT facilitation for the more predictable
syllables within words.

Familiarity rating task

As a group, patients rated words as more familiar than part-words and nonwords (Figure
2B, Effect of Word Type: F(1.45, 24.62) = 9.64, p =.002, n2 = .362; linear contrast: p <.001). Out
of the 18 patients, 11 showed descriptive evidence of explicit SL, as indicated by numerically

higher familiarity ratings for words as compared to part-words and nonwords.

iEEG Neural Entrainment Results

Initial characterization
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We analyzed intracranial electrophysiological recordings from a total of 2261 electrode
contacts across the 18 patients. The most densely covered areas included the insula, temporal
lobe, and medial temporal lobe, including the hippocampus. We examined neural entrainment
at our two frequencies of interest (word and syllable) for each patient and each individual
electrode contact separately. Across all electrode contacts pooled across all patients, we
observed entrainment to the syllable frequency in both the structured and random conditions,
while robust entrainment at the word frequency was observed only in the structured condition
(Figure 3A). This overall pattern is expected based on prior EEG studies (e.g. Batterink & Choi,
2021; Batterink & Paller, 2017) and iEEG work (Henin et al., 2021).

At the individual electrode contact level, we found different temporal tuning responses
among the contacts that entrained to our task. Namely, in the structured condition, 25.4% of
contacts showed significant entrainment (p < .05, FDR corrected) to only the syllable frequency
(563 out of 2261), 11.1% of contacts showed significant entrainment to both the word and the
syllable frequency (252 out of 2261) and 4.1% of contacts showed significant entrainment to
the word frequency alone (92 out of 2261). In contrast, in the random condition, less than 1%
of contacts (10 out of 2261) entrained to the word frequency only, less than 1% entrained to
both frequencies (6 out of 2261), and 36.8% entrained to the syllable frequency only (833 out
of 2261). Interestingly, a significantly greater number of contacts showed entrainment at the
syllable frequency in the random condition compared to the structured condition (McNemar’s
x3(1, N =2261) = 86.39, p < .001), echoing findings from scalp EEG which sometimes shows

stronger average syllable-level entrainment to random sequences (e.g. Batterink & Paller, 2017;
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Buiatti et al., 2009).Figure 3B displays the average ITC of the electrode contacts across patients
that showed each of these three entrainment profiles.

Next, we capitalized on the spatial resolution afforded by iEEG to localize the specific
brain regions involved in tracking the statistical regularities in our task. Figure 4A displays the
whole-brain distribution of all responsive electrode contacts pooled across patients, for both
conditions. Since our main interest was entrainment to the word frequency as a neural marker
of SL, we isolated the electrode contacts that entrained to word-only and word+syllable
frequencies (Figure 4B, Table 2). We found that these contacts were primarily localized within
middle temporal gyrus (69 out of 390; 17.6%), superior temporal gyrus (44 out of 131; 33.6%),
insula (85 out of 387; 22.0%), and supramarginal gyrus (23 out of 66; 34.8%). Other responsive
contacts in less densely covered regions were localized in frontal cortex, putamen, and
transverse temporal gyrus (i.e., Heschl's gyrus; see Table 2). Contrary to our hypothesis, we did
not find convincing evidence of hippocampal sensitivity to the statistical regularities in the
structured condition, despite dense coverage of this region (180 electrode contacts). Only 8
contacts showed significant entrainment to the word frequency in the structured condition (5
word-only; 3 word+syllable). Surprisingly, 4 hippocampal contacts also entrained to the word
frequency in the random condition (all word-only).

Linear mixed-effects modeling

Our first two models (examining the effect of condition on neural entrainment at each
frequency of interest) revealed that, as expected, entrainment at the word frequency was
significantly higher overall in the structured condition compared to the random condition

(Condition effect: B = 0.86, SE = 0.041, t(4502.94) = 20.97, p < .001). In contrast, entrainment at
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the syllable frequency was significantly lower overall in the structured condition compared to
random (B =-0.16, SE = 0.046, t(2260.00) = —3.52, p <.001).-The results from these two models
align with our initial findings reported above, namely the robust word entrainment in the
structured condition and the stronger entrainment to syllable frequency in the random
condition compared to the structured.

The third model, which characterized neural entrainment at the word frequency within
the structured condition as a function of brain region, is summarized in Table 3. A total of 17
regions had zITC estimates significantly above zero, including the four regions identified to have
greatest total number of word-entrained electrode contacts by our initial characterization
above: insula, middle temporal gyrus, superior temporal gyrus, and supramarginal gyrus. Other
regions associated with high zITC estimates include tranverse temporal gyrus (which notably
had the highest zITC mean among all regions, zITC = 5.74), inferior temporal lobe, regions
within the frontal lobe (notably the pars opercularis and pars triangularis portions of the IFG),
and the basal ganglia (putamen and caudate nucleus). In contrast, the hippocampus did not
show above-zero entrainment to the word frequency and, interestingly, its zITC estimate was
significantly below the grand mean across all regions, indicating it was actually less responsive
to statistical structure than the average contact. These results fall in line with the reported
findings from our initial characterization above and provide further evidence of the
engagement (or lack thereof) of these brain regions in our task.
Lateralization effects

To examine hemispheric lateralization in word-frequency entrainment within the

structured condition, we first conducted a Chi-square test by hemisphere (left, right) in the
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regions identified by our initial characterization analyses to be highly responsive to the word
frequency. We included only the regions that had sufficient coverage and number of word-
entrained electrode contacts (including word-only and word+syllable) to fit the criteria for a
valid Chi-square test (i.e. no expected values lower than 5 in the 2x2 contingency tables). The
regions that fit the criteria were middle temporal gyrus (MTG), superior temporal gyrus (STG),
insula, and supramarginal gyrus. The Chi-square results showed significant left-lateralization in
STG (X2 (1, N =131) = 7.24, p = .007) and supramarginal gyrus (X% (1, N = 66) = 7.70, p = .005). In
contrast, lateralization was not observed in MTG (p =.573) or insula (p = .432).

Next, we ran a linear mixed-effects model for each of these four regions separately. The
models revealed that entrainment in the supramarginal gyrus was significantly stronger in the
left hemisphere compared to the right (B =-1.74, SE = 0.630, t(30.04) = -2.77, p = .010).
Similarly, the superior temporal gyrus also showed a trend towards left-lateralization, though
the effect did not reach significance here (B =-0.95, SE = 0.486, t(118.02) =-1.96, p =.053).
Further, there was again no effect of laterality in MTG ( =-0.14, SE = 0.168, t(386.85) = -0.84,
p =.404). Lastly, in contrast to the Chi-square analysis, the insula showed stronger entrainment
in the right hemisphere compared to the left (B = 1.03, SE = 0.196, t(384.85) = 5.26, p <.001).
This discrepancy between the Chi-square and LME results may reflect the higher sensitivity of
the LME approach, as it accounts for the nesting of electrode contacts within subjects and the
magnitude of the zITC values (the Chi-square analysis, by contrast, only incorporates the count
of entrained contacts into its computation). Lastly, no major changes in lateralization were

observed when the three left-handers in our patient sample were excluded.
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Table 2: Results from initial characterization (contacts pooled across patients) summarizing neural entrainment across brain

regions in the structured condition

Region Word- Syllable- Word + Total Proportion
only only syllable contacts sensitive to
word*
Amygdala 2 8 0 65 0.03
Caudal Anterior Cingulate 0 2 0 14 0.00
Caudal Middle Frontal 0 2 0 14 0.00
Caudate 0 0 2 2 1.00
Cuneus 0 0 0 16 0.00
Entorhinal 0 0 0 11 0.00
Fusiform 3 12 4 56 0.13
Hippocampus 5 13 3 180 0.04
Inferior Parietal 0 14 1 42 0.02
Inferior temporal 4 11 1 28 0.18
Insula 18 132 67 387 0.22
Isthmus Cingulate 1 8 0 43 0.02
Lateral Occipital 0 6 0 52 0.00
Lateral Orbitofrontal 4 15 6 65 0.15
Lingual 2 8 1 49 0.06
Medial Orbitofrontal 2 9 0 41 0.05
Middle Temporal 26 116 43 390 0.18
Paracentral 1 2 1 14 0.14
Parahippocampal 0 2 0 4 0.00
Pars Opercularis 2 7 1 20 0.15
Pars Orbitalis 0 6 0 27 0.00
Pars Triangularis 3 14 1 72 0.06
Pericalcarine 0 0 0 9 0.00
Postcentral 4 12 7 41 0.27
Posterior Cingulate 0 4 1 14 0.07
Precentral 1 9 7 40 0.20
Precuneus 0 8 0 11 0.00
Putamen 4 21 8 42 0.29
Rostral Anterior Cingulate 0 0 0 9 0.00
Rostral Middle Frontal 0 5 1 26 0.04
Superior Frontal 0 19 3 62 0.05
Superior Parietal 0 8 1 24 0.04
Superior Temporal 6 32 38 131 0.34
Supramarginal 0 19 23 66 0.35
Transverse Temporal 0 1 10 11 0.91
Unclassified 4 38 22 183 0.14
Total 92 563 252 2261

Note: The “Unclassified” brain region refers to areas of the brain (mostly white matter) that did not get classified by the
algorithm into any of the specified areas in the atlas used for segmentation. *Includes word-only and word+syllable.
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zITC against zero

zITC against grand mean across
brain regions

Region Est.lmated p-value Beta estimate p-value
marginal mean
Amygdala 0.341 ns -0.507 *
Caudal Anterior Cingulate 0.555 ns -0.293 ns
Caudal Middle Frontal 0.776 ns -0.072 ns
Caudate 2.887 ok 2.04 ns
Cuneus 0.055 ns -0.793 *
Entorhinal 0.326 ns -0.522 ns
Fusiform 0.545 " -0.303 ns
Hippocampus 0.217 ns -0.63 Hokk
Inferior Parietal -0.266 ns -1.114 Hokk
Inferior temporal 0.985 xS 0.137 ns
Insula 1.25 XX 0.402 koK
Isthmus Cingulate -0.09 ns -0.938 ok
Lateral Occipital -0.205 ns -1.052 ok
Lateral Orbitofrontal 0.487 & -0.361 ns
Lingual -0.083 ns -0.931 wokx
Medial Orbitofrontal 0.073 ns -0.775 ok
Middle Temporal 0.911 Hkx 0.063 ns
Paracentral 1.302 ok 0.455 ns
Parahippocampal 1.257 ns 0.41 ns
Pars Opercularis 1.279 EA 0.432 ns
Pars Orbitalis 0.051 ns -0.797 ok
Pars Triangularis 0.532 & -0.315 ns
Pericalcarine 0.094 ns -0.754 ns
Postcentral 1.698 R 0.85 *Ex
Posterior Cingulate 0.916 & 0.068 ns
Precentral 1.824 h A 0.976 *kx
Precuneus -0.345 ns -1.193 *ok
Putamen 1.207 LR L 0.359 ns
Rostral Anterior Cingulate 0.375 ns -0.473 ns
Rostral Middle Frontal 0.425 ns -0.423 ns
Superior Frontal 0.777 E -0.071 ns
Superior Parietal 0.066 ns -0.783 *
Superior Temporal 1.924 XX 1.077 Hokk
Supramarginal 1.873 X 1.025 ok
Transverse Temporal 5.737 EA 4.889 ok x
Unclassified 0.76 *kx - -

Note: When using sum contrasts in R, the estimate for the final item in the list is calculated as the negative sum of all other
estimates. This value is hidden in the output, hence why the estimate for the “Unclassified” region is empty. * p <.05; ** p <.01;

*** p <.001; ns = not significant.
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Time course of neural entrainment

To examine whether entrainment systematically increased or decreased over the course
of exposure to the structured condition, we conducted one-sample t-tests to determine
whether the mean slope representing the trajectory of ITC over time at each frequency
significantly differed from zero. We initially included all electrode contacts across all patients in
this analysis to capture changes in entrainment that may have been present even in electrode
contacts that did not reach significant ITC values when calculated across the entire 30 epochs.
The t-tests revealed that the mean slope did not significantly differ from zero for either the
word frequency (t(17) = -0.73, p = 0.475) or the syllable frequency (t(17) = -0.32, p = 0.756),
indicating no reliable changes in entrainment over time. Additional Bayesian one-sample t-tests
provided moderate evidence in favor of the null hypothesis for both the word frequency (BFo1 =
3.25) and the syllable frequency (BFo1 = 3.93). Figure 5 shows the time course of neural
entrainment to the word and syllable frequencies in the structured condition, across all patients
and all electrode contacts.

Since it was possible that we did not observe any changes in neural entrainment due to
the inclusion of all electrode contacts (even those that did not show significant entrainment to
either of our frequencies of interest in our main analyses), we extracted only the contacts that
were responsive to our task and repeated the analysis. More specifically, we separately
grouped the electrode contacts exhibiting each of the three entrainment profiles described
above (word-only, word+syllable, syllable-only) and calculated the linear slopes for each group.

Once again, the one-sample t-tests comparing slope values to zero revealed no significant
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change over time for any group or frequency (all p-values > 0.05). Bayesian one-sample t-tests
yielded evidence in favor of the null hypothesis for both the word frequency (word-only
contacts: BFo; = 2.74 word + syllable contacts: BFo; = 2.43; syllable-only contacts: BFo; = 3.91)
and the syllable frequency (word-only contacts: BFo; = 1.30; word + syllable contacts: BFo; =

3.45; syllable-only contacts: BFo; = 2.23).

Discussion

Our study investigated linguistic auditory SL in a group of patients with epilepsy that
underwent implantation of intracranial depth electrodes for presurgical investigation. We
measured neural entrainment at the frequency of individual syllables and trisyllabic words, with
entrainment to the trisyllabic words serving as a neural marker of SL. We also obtained
behavioral measures of SL through implicit and explicit tasks in the same individuals.
Behaviorally, we found evidence of statistical learning at the group level in both implicit and
explicit tasks. At the neural level, we found strong entrainment to the word frequency in the
structured condition, but not in the random condition. These word entrainment effects were
observed primarily in temporal regions (MTG, STG, and Heschl’s gyrus), insula, and
supramarginal gyrus, with some notable entrainment also present in basal ganglia (putamen
and caudate), and frontal regions (notably pars opercularis and pars triangularis). Furthermore,
we observed evidence of right lateralization in the insula, and left lateralization in the
supramarginal gyrus and STG. Lastly, contrary to our initial hypothesis, we did not find
convincing evidence of hippocampal involvement in tracking regularities from speech through

neural entrainment.
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Processing of statistical regularities in modality-specific regions

Our finding that primary auditory (Heschl’s gyrus) and associative auditory regions
(MTG, STG) are among the most highly responsive regions to the statistical word structures falls
largely in line with previous studies implicating modality-specific regions in SL. For instance,
fMRI studies using auditory stimuli have consistently found engagement of the STG in SL
(Cunillera et al., 2009; Karuza et al., 2013; McNealy et al., 2006), along with other parts of the
temporal lobe, including MTG (Karuza et al., 2013; McNealy et al., 2006). In the visual domain,
fMRI studies have found that different regions within the occipital cortex are involved in
processing visual statistical regularities (Karuza et al., 2017; Turk-Browne et al., 2009). Recent
studies using neural entrainment as a measure of SL have further supported these findings. A
magnetoencephalography (MEG) study using tone stimuli reported neural entrainment effects
in STG and supramarginal gyrus (Moser et al., 2021), which are two of the most responsive
regions to words in the present study. Further, an iEEG study using both auditory and visual
stimuli observed entrainment to trisyllabic words in auditory temporal cortex and entrainment
to image pairs in occipital cortex (Henin et al., 2021). Another iEEG study used visual stimuli
organized into regularities at exemplar and categorical levels and found entrainment in the
visual cortex to statistical regularities at both levels (Sherman et al., 2023). The common
empirical finding that modality-specific sensory cortices support SL is congruent with a
theoretical account in which similar computations (here, as reflected in neural entrainment) are
applied across domains but are ultimately constrained by modality-specific neurocircuitry (Frost

et al., 2015).
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Our finding of left lateralization in STG and supramarginal gyrus is consistent with
previous fMRI studies of linguistic auditory SL. For instance, engagement of the left STG was
reported by Cunillera et al., (2009) and Karuza et al., (2013). Although McNealy et al., (2006)
found bilateral STG activation during the exposure phase of their task, they found that only left
STG activation was correlated with post-exposure behavioral performance. Further, left
supramarginal gyrus activation was found by both McNealy et al., (2006) and Karuza et al.,
(2013). The STG and supramarginal gyrus are both part of a well-described canonical language
network that is lateralized to the left hemisphere in most individuals (Fedorenko et al., 2024).
Interestingly, an fMRI study that used auditory tones instead of syllables found activation of
STG but not supramarginal gyrus (Abla & Okanoya, 2008), while a MEG study that also used
tones did find engagement of supramarginal gyrus, but this response was bilateral with a larger
cluster in the right hemisphere (Moser et al., 2021). Further, another recent study observed
that the left posterior temporal gyrus was engaged in both natural language processing and
linguistic auditory SL, but not in non-linguistic auditory SL (Schneider et al., 2024). Therefore, in
line with Frost and colleagues' (2015) account of modality and stimulus-specific constraints on
SL, it is likely that linguistic auditory SL engages regions within the language network that are
not necessarily recruited by non-linguistic auditory stimuli.

Entrainment beyond auditory regions

Our results also align with previous studies reporting engagement of the IFG during SL.
Although our initial characterization showed limited involvement of the IFG (pars triangularis,
pars orbitalis, and pars opercularis in Table 2) in terms of the raw proportion of word-entrained

electrodes, our more sensitive LME approach revealed that the pars opercularis and pars
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triangularis portions of the IFG show significant entrainment at the word frequency. The IFG,
which contains the canonical Broca’s area (Keller et al., 2009), has been associated with several
different language functions, including semantic and phonological processing (Liakakis et al.,
2011), complex syntactic processing (Friederici & Gierhan, 2013), and pre-articulatory
processing (Flinker et al., 2015). Within the context of SL, the IFG has been found to be involved
in both linguistic auditory (Henin et al., 2021; Karuza et al., 2013; McNealy et al., 2006) and
non-linguistic auditory (Abla & Okanoya, 2008) studies, suggesting that it plays a domain-
general role in learning regularities across modalities.

Further, our LME models also revealed significant entrainment in regions within the
basal ganglia, notably the putamen. This finding converges with previous fMRI studies that have
reported engagement of the putamen in both visual (Turk-Browne et al., 2009; Karuza et al.,
2017) and auditory SL (McNealy et al., 2006; Karuza et al., 2013). Beyond SL, the putamen has
been implicated in many other types of implicit learning, including probabilistic implicit
sequence learning (Wilkinson & Jahanshahi, 2007) and implicit contextual learning (van Asselen
et al., 2009). Therefore, due to the similarities between SL and other forms of implicit learning
(Batterink et al., 2019; Christiansen, 2019; Perruchet & Pacton, 2006), it is not surprising that
the putamen was engaged in our task as well.

Interestingly, we found robust entrainment at the word frequency within the insula,
with stronger entrainment in the right hemisphere (as shown by our LME approach). This region
is functionally heterogeneous, with functions ranging from somatosensory to cognitive (Uddin
et al., 2017). At the cognitive level, the insula’s role in the salience network is well-established

(Uddin, 2015), but other studies have linked it to specific language functions as well. For
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instance, in a meta-analysis, Oh et al., (2014) found that bilateral regions within the anterior
insula were activated in tasks composed of linguistic reception and expression (whole words,
syntax, morphology, or pragmatics). Further, bilateral insular activation was also found in
perception and production of speech stimuli (phonetic, syllabic, or non-word), with speech
production showing more left-hemisphere dominance (Oh et al., 2014). Moreover, an earlier
study found that the left precentral insular gyrus is involved in coordinating articulation
(Dronkers, 1996). Thus, it is possible that the insula was responsive to our task due to its
general role in language and speech processing. However, a recent iEEG study of visual SL also
reported neural entrainment to visual regularities in the insula (Sherman et al., 2023), so this
leaves open the possibility that the insula has a role in SL across sensory modalities that is
independent of any linguistic process. Obtaining more clarity on the role of the insula in our
task (and its potential right lateralization) will require further consideration of the functional
differentiation within this structure in future work.
Three neural entrainment profiles

Across the electrode contacts that were responsive to our task, we found three distinct
entrainment profiles: entrainment to the word frequency only; to the syllable frequency only;
and to both the word and the syllable frequencies. These discrete profiles of entrainment
cannot be observed through scalp EEG, which reflects the summation of activity across millions
of neurons distributed over the cortex, and can only be revealed with iEEG due to its far
superior spatial resolution. The existence of word-only entrainment in a subset of electrode
contacts suggests that some brain regions may be involved in processing primarily higher-order

statistical units, without directly processing the lower-level input. In contrast, other regions
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support processing of lower-level sensory input, but are not involved in discovering the higher-
level regularities. Finally, a third category of regions appear to be involved in processing both
the sensory input as well as the higher-level regularities. Henin et al., (2021) suggested that
mainly sensory regions (i.e., STG) showed the third (syllable + word) profile, while higher-order,
domain-general regions (i.e., IFG and anterior temporal lobe) had a higher incidence of
entrainment restricted to the frequency of the statistical regularities (word-only). These
findings are interpreted as a functional and anatomical processing hierarchy, wherein sensory
brain regions are involved in early, lower-level processing, and domain-general regions engage
in later, higher-order processing of the statistical regularities.

Our results provide some support for this account. Similar to Henin and colleagues,
electrode contacts within primary auditory regions (STG and Heschl’s gyrus) mostly showed
syllable-only and word+syllable entrainment, with few contacts entraining to the word
frequency only (see Table 2). Further, the supramarginal gyrus, which has been implicated in
early phonological processing (Hartwigsen et al., 2010; Sliwinska et al., 2012), also showed
syllable-only and word+syllable entrainment, without any contacts showing word-only
entrainment. We observed word-only entrainment mostly in insula and MTG, which are not
among the regions described by Henin et al., (2021) as showing a word-only entrainment
profile, but which also both play a role in higher-level cognitive processes, including language
processing (e.g. Oh et al., 2014; Visser et al., 2012; Yu et al., 2022). Lastly, we were unable to
examine entrainment effects in the anterior temporal lobe—a region that was highlighted by
Henin and colleagues as being especially sensitive to statistical regularities—due to insufficient

coverage of this area in our sample (see Appendix A).
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The role of the hippocampus in SL

In contrast with our initial hypothesis, we did not find convincing evidence of
hippocampal involvement in our task. Only 8 electrode contacts (4.4%), within only 4 patients,
showed significant entrainment to the word frequency following FDR correction. This number
was similar to that observed in the random condition, leading us to interpret even this minimal
involvement with caution. Further, our LME analyses revealed that the hippocampus actually
showed significantly weaker entrainment to the word frequency compared to the average
entrainment estimate across brain regions. The lack of word-level entrainment in the
hippocampus is unlikely to be due to insufficient electrode coverage in this structure. In fact,
the hippocampus was one of the regions with the densest overall coverage across our patient
sample (180 electrode contacts).

There are a number of possible factors that may account for why hippocampal
entrainment to the word frequency was largely absent. First, it is possible that the role of the
hippocampus in SL may be specific to the visual modality. fMRI studies that have reported
hippocampal engagement in SL have mainly used visual non-linguistic stimuli (Ellis et al., 2021;
Karuza et al., 2017; Sherman & Turk-Browne, 2020; Turk-Browne et al., 2009). To our
knowledge, fMRI studies on SL using auditory stimuli, either linguistic or non-linguistic, have
generally not reported hippocampal activation (Cunillera et al., 2009; Karuza et al., 2013;
McNealy et al., 2006; Schneider et al., 2024).

Another possibility is that the hippocampus is not critically involved in the learning
process itself, but rather in retrieving learned regularities to generate predictions of upcoming

stimuli. Previous SL studies using visual stimuli have indeed reported evidence of prediction in
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the hippocampus (Sherman et al., 2022; Sherman & Turk-Browne, 2020), but these findings
remain to be confirmed in auditory SL.

A final possibility is that neural entrainment is an insensitive index of statistical learning
within the hippocampus, at least with the word presentation frequency used in the current
study. Henin et al., (2021) used a similar word presentation rate in their work and, like us, did
not observe entrainment effects in the hippocampus. However, after performing a
representational similarity analysis, they found that the hippocampus uniquely represented the
identity of the word units, as shown by similar neural activity patterns to syllables that
belonged to the same word. Therefore, it is possible that the hippocampus plays a role in SL
even for auditory linguistic stimuli, but that its computations do not involve tight phase-locking
of neural activity to the incoming stimuli and, as a consequence, would not be well-captured
through neural entrainment measures.

The time course of neural entrainment

We did not observe a clear pattern of change in entrainment to the word frequency
over the course of exposure to the structured stream. This was true when all electrode contacts
were included, and even when we included only the responsive electrode contacts in the
analysis. This result is at odds with previous EEG studies using a similar sliding time-window
analysis, as these studies have generally shown that entrainment to the word frequency across
electrodes tends to gradually increase over time, while entrainment to the syllable frequency
remains relatively stable throughout exposure (Batterink & Choi, 2021; Batterink & Paller, 2017,
Moreau et al., 2022; Ordin et al., 2020; Smalle et al., 2022). However, another iEEG study also

conducted this analysis on their data and, like us, found no discernible change in entrainment
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over the course of exposure in either of their two experimental conditions (Sherman et al.,
2023).

Although we do not have a definitive explanation for these results, they could be due to
a few factors. First, the electrical activity measured by scalp EEG differs from that recorded by
intracranial electrodes (Mercier et al., 2022). Namely, EEG measures the activity of millions of
neurons distributed over the cortex, while the electrodes used in intracranial EEG measure
more localized activity. In the case of sEEG, depth electrodes measure electrical activity directly
from deep regions within the brain. Thus, it is possible that these deeper regions have different
learning trajectories than the more superficial regions, and these differences in trajectories are
obscured when averaging electrode contacts across the brain. It is also possible that the sliding-
time window analysis is not the best analytic approach for iEEG data, as it may be too coarse to
account for the unique entrainment profiles observed in this type of data and the disparate
coverage across the brain that is inherent to any iEEG study. Future studies that account for
differences in learning trajectory between regions and/or type of entrainment (e.g. word-only,
word+syllable, syllable-only) could provide a more fine-grained view of neural entrainment
changes over time across the brain.
Robust behavioral evidence for SL

Overall, we found robust evidence of statistical learning on the target detection task.
Not only did patients show strong facilitation to predictable syllables at the group level, as
evidenced by faster RTs as a function of syllable position, but 11 out of 17 patients had reliable
evidence of learning at the individual level, representing a relatively stringent statistical

criterion. Moreover, nearly the entire sample (16/17) showed numerically faster RTs to more
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predictable syllables. Overall, we interpret our results from the target detection task as robust
evidence of implicit SL in our sample. Thus, our data provide evidence of SL not just at the level
of neural entrainment but also in behavior.

In contrast, evidence of learning in the familiarity rating task is somewhat weaker. While
as a group the patients showed significantly higher familiarity ratings for words compared to
the two foil types (part-words and nonwords), only 11 out of the 18 patients rated words
numerically higher than partwords and nonwords. The small number of trials on this task
precluded us from testing for significance on this task at the individual level—as we did for the
target detection task—so we do not have information on significant learning at the individual
patient level. The less robust evidence for learning on this task compared to the target
detection task could potentially be explained by the epilepsy diagnosis of our participants. It is
known that patients with epilepsy often suffer from declarative memory deficits, in particular in
association with temporal lobe focus (Tramoni-Negre et al., 2017), among other cognitive
impairments (Holmes, 2015). Since the familiarity rating task is thought to engage mostly
explicit memory mechanisms, it is not surprising that our participants showed less robust
performance on this task (effect size of word type on ratings: n2 =.362) compared to the target
detection task (effect size of syllable position on reaction time: n2 = .581).3 However, we note
that differences in task reliability may also contribute to differential performance on these two

tasks (Christiansen, 2019; Isbilen et al., 2017).

31t is worthwhile to note that effect sizes for the familiarity rating task and target detection task are similar to one
another in healthy participants, as shown in a reanalysis of Batterink and Paller (2017). Effect size of word type on
ratings: n2 = .534; effect size of syllable position on reaction time: n2 = .580.
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A recent study that used our stimuli and the same tasks on an amnesic patient with a

dentate gyrus lesion yielded similar results — namely, the patient had intact performance on the

oNOYTULT D WN =

target detection task while his performance on the familiarity rating task was impaired (Wang,
1 Rosenbaum, et al., 2023). Further, the familiarity rating task may be more demanding even for
13 healthy individuals due to the explicit memory judgements that it requires. For instance,
Batterink et al., (2015) found that the target detection task revealed learning in a greater

18 proportion of healthy adults compared to a 2-alternative forced-choice task (which, like the
familiarity rating task, is a measure of explicit learning).

23 Limitations

As with any human intracranial EEG study, one of our fundamental limitations was the
28 heterogenous electrode coverage across patients, which prevents us from making meaningful
30 comparisons between participants. Moreover, we did not include the patients’

33 neuropsychological profiles or medication intake as variables in our analyses. This is especially
35 limiting in our lateralization analyses, as we included both right-handed (n = 15) and left-
handed patients (n = 3) in our study. It has been shown that the incidence of atypical language
40 network lateralization is higher in left-handers compared to right-handers - although the
majority of left-handers still have typical left-lateralized language (Pujol et al., 1999; Szaflarski
45 et al., 2002, Mazoyer et al., 2014). Lastly, another intrinsic limitation of any iEEG study is the
fact that electrodes are implanted in brain regions estimated to contain the seizure onset and
50 propagation zones (Mercier et al., 2022). Although we tested patients at a time window in

52 which epileptic spikes were thought to be minimal by the clinical staff, our iEEG data was not

55 inspected by a neurologist to remove the individual electrode contacts that had epileptic
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activity (if any). Therefore, it is possible that some epileptic activity may have contaminated our
signal, though we note that any such effects would work against our main reported

entrainment findings.

Conclusion

Overall, we found strong evidence of the engagement of auditory and language-specific
brain regions in tracking the statistical regularities within speech-based SL. This is consistent
with previous fMRI and intracranial EEG studies, which point to a major role of sensory cortices
in SL. Further, we did not find convincing evidence of hippocampal engagement with our neural
entrainment measure, though future alternative analyses could reveal crucial information
about processing of statistical regularities in this region. Lastly, participants in the current study
showed more robust learning on our implicit measure as compared to our explicit measure of
SL. The current results highlight the important contributions of modality-specific brain regions
to auditory speech-based SL and call for caution in generalizing between findings from SL tasks

in different domains and modalities.

42

Page 42 of 64



Page 43 of 64

oNOYTULT D WN =

Journal of Cognitive Neuroscience

References

Abla, D., & Okanoya, K. (2008). Statistical segmentation of tone sequences activates the left
inferior frontal cortex: A near-infrared spectroscopy study. Neuropsychologia, 46(11),
2787-2795. https://doi.org/10.1016/j.neuropsychologia.2008.05.012

Arciuli, J., & Simpson, I. C. (2011). Statistical learning in typically developing children: The role of
age and speed of stimulus presentation. Developmental Science, 14(3), 464—473.
https://doi.org/10.1111/j.1467-7687.2009.00937.x

Arnon, I, Kirby, S., Allen, J. A., Garrigue, C., Carroll, E. L., & Garland, E. C. (2025). Whale song
shows language-like statistical structure. Science, 387(6734), 649—-653.
https://doi.org/10.1126/science.adq7055

Bates, D., Machler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models
Using Ime4. Journal of Statistical Software, 67(1), 1-48.
https://doi.org/10.18637/jss.v067.i01

Batterink, L. (2020). Syllables in Sync Form a Link: Neural Phase-locking Reflects Word
Knowledge during Language Learning. Journal of Cognitive Neuroscience, 32(9), 1735—
1748. https://doi.org/10.1162/jocn_a_01581

Batterink, L. J., & Choi, D. (2021). Optimizing steady-state responses to index statistical learning:
Response to Benjamin and colleagues. Cortex, 142, 379-388.
https://doi.org/10.1016/j.cortex.2021.06.008

Batterink, L. J., & Paller, K. A. (2017). Online neural monitoring of statistical learning. Cortex, 90,

31-45. https://doi.org/10.1016/j.cortex.2017.02.004

43



oNOYTULT D WN =

Journal of Cognitive Neuroscience

Batterink, L. J., & Paller, K. A. (2019). Statistical learning of speech regularities can occur outside
the focus of attention. Cortex, 115, 56—71. https://doi.org/10.1016/j.cortex.2019.01.013

Batterink, L. J., Paller, K. A., & Reber, P. J. (2019). Understanding the Neural Bases of Implicit
and Statistical Learning. Topics in Cognitive Science, 11(3), 482-503.
https://doi.org/10.1111/tops.12420

Batterink, L. J., Reber, P. J., Neville, H. J., & Paller, K. A. (2015). Implicit and explicit contributions
to statistical learning. Journal of Memory and Language, 83, 62—78.
https://doi.org/10.1016/j.jml|.2015.04.004

Bogaerts, L., Frost, R., & Christiansen, M. H. (2020). Integrating statistical learning into cognitive
science. Journal of Memory and Language, 115, 104167.
https://doi.org/10.1016/j.jm|.2020.104167

Boros, M., Magyari, L., Torok, D., Bozsik, A., Deme, A., & Andics, A. (2021). Neural processes
underlying statistical learning for speech segmentation in dogs. Current Biology, 31(24),
5512-5521.e5. https://doi.org/10.1016/j.cub.2021.10.017

Buiatti, M., Pena, M., & Dehaenelambertz, G. (2009). Investigating the neural correlates of
continuous speech computation with frequency-tagged neuroelectric responses.
Neurolmage, 44(2), 509-519. https://doi.org/10.1016/j.neuroimage.2008.09.015

Choi, D., Batterink, L. J., Black, A. K., Paller, K. A., & Werker, J. F. (2020). Preverbal Infants
Discover Statistical Word Patterns at Similar Rates as Adults: Evidence From Neural
Entrainment. Psychological Science, 31(9), 1161-1173.

https://doi.org/10.1177/0956797620933237

44

Page 44 of 64



Page 45 of 64

oNOYTULT D WN =

Journal of Cognitive Neuroscience

Christiansen, M. H. (2019). Implicit Statistical Learning: A Tale of Two Literatures. Topics in
Cognitive Science, 11(3), 468—481. https://doi.org/10.1111/tops.12332

Conway, C. M., & Christiansen, M. H. (2005). Modality-Constrained Statistical Learning of
Tactile, Visual, and Auditory Sequences. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 31(1), 24-39. https://doi.org/10.1037/0278-7393.31.1.24

Covington, N. V., Brown-Schmidt, S., & Duff, M. C. (2018). The Necessity of the Hippocampus for
Statistical Learning. Journal of Cognitive Neuroscience, 30(5), 680—697.
https://doi.org/10.1162/jocn_a_01228

Cunillera, T., Camara, E., Toro, J. M., Marco-Pallares, J., Sebastian-Galles, N., Ortiz, H., Pujol, J.,
& Rodriguez-Fornells, A. (2009). Time course and functional neuroanatomy of speech
segmentation in adults. Neurolmage, 48(3), 541-553.
https://doi.org/10.1016/j.neuroimage.2009.06.069

Dronkers, N. F. (1996). A new brain region for coordinating speech articulation. Nature,
384(6605), 159-161. https://doi.org/10.1038/384159a0

Ellis, C. T., Skalaban, L. J., Yates, T. S., Bejjanki, V. R., Cérdova, N. |., & Turk-Browne, N. B. (2021).
Evidence of hippocampal learning in human infants. Current Biology, 31(15), 3358-
3364.e4. https://doi.org/10.1016/j.cub.2021.04.072

Fedorenko, E., Ivanova, A. A., & Regev, T. |. (2024). The language network as a natural kind
within the broader landscape of the human brain. Nature Reviews Neuroscience, 25(5),

289-312. https://doi.org/10.1038/s41583-024-00802-4

45



oNOYTULT D WN =

Journal of Cognitive Neuroscience Page 46 of 64

Fiser, J., & Aslin, R. N. (2001). Unsupervised Statistical Learning of Higher-Order Spatial
Structures from Visual Scenes. Psychological Science, 12(6), 499-504.
https://doi.org/10.1111/1467-9280.00392

Fiser, J., & Aslin, R. N. (2002a). Statistical learning of higher-order temporal structure from
visual shape sequences. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 28(3), 458-467. https://doi.org/10.1037/0278-7393.28.3.458

Fiser, J., & Aslin, R. N. (2002b). Statistical learning of new visual feature combinations by
infants. Proceedings of the National Academy of Sciences, 99(24), 15822-15826.
https://doi.org/10.1073/pnas.232472899

Flinker, A., Korzeniewska, A., Shestyuk, A. Y., Franaszczuk, P. J., Dronkers, N. F., Knight, R. T., &
Crone, N. E. (2015). Redefining the role of Broca’s area in speech. Proceedings of the
National Academy of Sciences, 112(9), 2871-2875.
https://doi.org/10.1073/pnas.1414491112

Flo, A., Brusini, P., Macagno, F., Nespor, M., Mehler, J., & Ferry, A. L. (2019). Newborns are
sensitive to multiple cues for word segmentation in continuous speech. Developmental
Science, 22(4), €12802. https://doi.org/10.1111/desc.12802

Fonov, V., Evans, A. C., Botteron, K., Almli, C. R., McKinstry, R. C., & Collins, D. L. (2011).
Unbiased average age-appropriate atlases for pediatric studies. Neurolmage, 54(1),
313-327. https://doi.org/10.1016/j.neuroimage.2010.07.033

Fonov, V., Evans, A., McKinstry, R., Almli, C., & Collins, D. (2009). Unbiased nonlinear average
age-appropriate brain templates from birth to adulthood. Neurolmage, 47, S102.

https://doi.org/10.1016/51053-8119(09)70884-5

46



Page 47 of 64 Journal of Cognitive Neuroscience

Fox, J., & Weisberg, S. (2019). An R companion to applied regression (3rd ed.). Sage

Publications. https://doi.org/10.32614/CRAN.package.car

oNOYTULT D WN =

Friederici, A. D., & Gierhan, S. M. (2013). The language network. Current Opinion in

11 Neurobiology, 23(2), 250-254. https://doi.org/10.1016/j.conb.2012.10.002

13 Frost, R., Armstrong, B. C., & Christiansen, M. H. (2019). Statistical learning research: A critical
review and possible new directions. Psychological Bulletin, 145(12), 1128—-1153.

18 https://doi.org/10.1037/bul0000210

Frost, R., Armstrong, B. C., Siegelman, N., & Christiansen, M. H. (2015). Domain generality

23 versus modality specificity: The paradox of statistical learning. Trends in Cognitive

25 Sciences, 19(3), 117-125. https://doi.org/10.1016/j.tics.2014.12.010

28 Hartwigsen, G., Baumgaertner, A., Price, C. J., Koehnke, M., Ulmer, S., & Siebner, H. R. (2010).
30 Phonological decisions require both the left and right supramarginal gyri. Proceedings of
33 the National Academy of Sciences, 107(38), 16494—-16499.

35 https://doi.org/10.1073/pnas.1008121107

Henin, S., Turk-Browne, N. B., Friedman, D., Liu, A., Dugan, P., Flinker, A., Doyle, W., Devinsky,
40 0., & Melloni, L. (2021). Learning hierarchical sequence representations across human
cortex and hippocampus. Science Advances, 7(8), eabc4530.

45 https://doi.org/10.1126/sciadv.abc4530

Holmes, G. L. (2015). Cognitive impairment in epilepsy: The role of network abnormalities.

50 Epileptic Disorders, 17(2), 101-116. https://doi.org/10.1684/epd.2015.0739

52 Isbilen, E. S., McCauley, S. M., Kidd, E., & Christiansen, M. H. (2017). Testing statistical learning

55 implicitly: A novel chunk-based measure of statistical learning. Proceedings of the 39th

59 47



oNOYTULT D WN =

Journal of Cognitive Neuroscience Page 48 of 64

Annual Meeting of the Cognitive Science Society, 39, 564-569.
https://escholarship.org/uc/item/8jd7m3df

Isbilen, E. S., & Christiansen, M. H. (2022). Statistical Learning of Language: A Meta-Analysis Into
25 Years of Research. Cognitive Science, 46(9), e13198.
https://doi.org/10.1111/cogs.13198

Karuza, E. A., Emberson, L. L., Roser, M. E., Cole, D., Aslin, R. N., & Fiser, J. (2017). Neural
Signatures of Spatial Statistical Learning: Characterizing the Extraction of Structure from
Complex Visual Scenes. Journal of Cognitive Neuroscience, 29(12), 1963-1976.
https://doi.org/10.1162/jocn_a_01182

Karuza, E. A., Newport, E. L., Aslin, R. N., Starling, S. J., Tivarus, M. E., & Bavelier, D. (2013). The
neural correlates of statistical learning in a word segmentation task: An fMRI study.
Brain and Language, 127(1), 46-54. https://doi.org/10.1016/j.bandl.2012.11.007

Keller, S. S., Crow, T., Foundas, A., Amunts, K., & Roberts, N. (2009). Broca’s area:
Nomenclature, anatomy, typology and asymmetry. Brain and Language, 109(1), 29-48.
https://doi.org/10.1016/j.bandl.2008.11.005

Lenth, R. V. (2025). emmeans: Estimated Marginal Means, aka Least-Squares Means. R package
version 1.11.2. https://doi.org/10.32614/CRAN.package.emmeans

Liakakis, G., Nickel, J., & Seitz, R. J. (2011). Diversity of the inferior frontal gyrus—A meta-
analysis of neuroimaging studies. Behavioural Brain Research, 225(1), 341-347.
https://doi.org/10.1016/j.bbr.2011.06.022

Mazoyer, B., Zago, L., Jobard, G., Crivello, F., Joliot, M., Perchey, G., Mellet, E., Petit, L., &

Tzourio-Mazoyer, N. (2014). Gaussian mixture modeling of hemispheric lateralization for

48



Page 49 of 64 Journal of Cognitive Neuroscience

language in a large sample of healthy individuals balanced for handedness. PLoS ONE,

9(6), €101165. https://doi.org/10.1371/journal.pone.0101165

oNOYTULT D WN =

McNealy, K., Mazziotta, J. C., & Dapretto, M. (2006). Cracking the Language Code: Neural

1 Mechanisms Underlying Speech Parsing. The Journal of Neuroscience, 26(29), 7629—
13 7639. https://doi.org/10.1523/JINEUROSCI.5501-05.2006

McNealy, K., Mazziotta, J. C., & Dapretto, M. (2010). The neural basis of speech parsing in
18 children and adults. Developmental Science, 13(2), 385—406.
https://doi.org/10.1111/j.1467-7687.2009.00895.x

23 Mercier, M. R., Dubarry, A.-S., Tadel, F., Avanzini, P., Axmacher, N., Cellier, D., Vecchio, M. D.,
Hamilton, L. S., Hermes, D., Kahana, M. J., Knight, R. T., Llorens, A., Megevand, P.,

28 Melloni, L., Miller, K. J., Piai, V., Puce, A., Ramsey, N. F., Schwiedrzik, C. M., ...

30 Oostenveld, R. (2022). Advances in human intracranial electroencephalography

33 research, guidelines and good practices. Neurolmage, 260, 119438.

35 https://doi.org/10.1016/j.neuroimage.2022.119438

Modat, M., Ridgway, G. R, Taylor, Z. A., Lehmann, M., Barnes, J., Hawkes, D. J., Fox, N. C., &
40 Ourselin, S. (2010). Fast free-form deformation using graphics processing units.
Computer Methods and Programs in Biomedicine, 98(3), 278—-284.

45 https://doi.org/10.1016/j.cmpb.2009.09.002

Moreau, C. N., Joanisse, M. F., Mulgrew, J., & Batterink, L. J. (2022). No statistical learning
50 advantage in children over adults: Evidence from behaviour and neural entrainment.
52 Developmental Cognitive Neuroscience, 57, 101154.

55 https://doi.org/10.1016/j.dcn.2022.101154

59 49



oNOYTULT D WN =

Journal of Cognitive Neuroscience Page 50 of 64

Moser, J., Batterink, L., Li Hegner, Y., Schleger, F., Braun, C., Paller, K. A., & Preissl, H. (2021).
Dynamics of nonlinguistic statistical learning: From neural entrainment to the
emergence of explicit knowledge. Neurolmage, 240, 118378.
https://doi.org/10.1016/j.neuroimage.2021.118378

Narizzano, M., Arnulfo, G., Ricci, S., Toselli, B., Tisdall, M., Canessa, A., Fato, M. M., & Cardinale,
F. (2017). SEEG assistant: A 3DSlicer extension to support epilepsy surgery. BMC
Bioinformatics, 18(1), 124. https://doi.org/10.1186/s12859-017-1545-8

Obleser, J., & Kayser, C. (2019). Neural Entrainment and Attentional Selection in the Listening
Brain. Trends in Cognitive Sciences, 23(11), 913-926.
https://doi.org/10.1016/j.tics.2019.08.004

Oh, A., Duerden, E. G., & Pang, E. W. (2014). The role of the insula in speech and language
processing. Brain and Language, 135, 96-103.
https://doi.org/10.1016/j.bandl.2014.06.003

Ordin, M., Polyanskaya, L., Soto, D., & Molinaro, N. (2020). Electrophysiology of statistical
learning: Exploring the online learning process and offline learning product. European
Journal of Neuroscience, 51(9), 2008-2022. https://doi.org/10.1111/ejn.14657

Orpella, J., Assaneo, M. F., Ripollés, P., Noejovich, L., Lépez-Barroso, D., Diego-Balaguer, R. D., &
Poeppel, D. (2022). Differential activation of a frontoparietal network explains
population-level differences in statistical learning from speech. PLOS Biology, 20(7),

€3001712. https://doi.org/10.1371/journal.pbio.3001712

50



Page 51 of 64

oNOYTULT D WN =

Journal of Cognitive Neuroscience

Perruchet, P., & Pacton, S. (2006). Implicit learning and statistical learning: One phenomenon,
two approaches. Trends in Cognitive Sciences, 10(5), 233—-238.
https://doi.org/10.1016/].tics.2006.03.006

Petersson, K.-M., Folia, V., & Hagoort, P. (2012). What artificial grammar learning reveals about
the neurobiology of syntax. Brain and Language, 120(2), 83—95.
https://doi.org/10.1016/j.bandl.2010.08.003

Pujol, J., Deus, J., Losilla, J. M., & Capdevila, A. (1999). Cerebral lateralization of language in
normal left-handed people studied by functional MRI. Neurology, 52(5), 1038-1043.
https://doi.org/10.1212/wnl.52.5.1038

Ramos-Escobar, N., Mercier, M., Trébuchon-Fonséca, A., Rodriguez-Fornells, A., Francois, C., &
Schon, D. (2022). Hippocampal and auditory contributions to speech segmentation.
Cortex, 150, 1-11. https://doi.org/10.1016/j.cortex.2022.01.017

Ringer, H., Sammler, D., & Daikoku, T. (2024). Neural tracking of auditory statistical regularities
is reduced in adults with dyslexia. https://doi.org/10.1101/2024.08.26.609678

Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical Learning by 8-Month-Old Infants.
Science, 274(5294), 1926-1928. https://doi.org/10.1126/science.274.5294.1926

Saffran, J. R., Johnson, E. K., Aslin, R. N., & Newport, E. L. (1999). Statistical learning of tone
sequences by human infants and adults. Cognition, 70(1), 27-52.
https://doi.org/10.1016/5S0010-0277(98)00075-4

Saffran, J. R., Newport, E. L., & Aslin, R. N. (1996). Word Segmentation: The Role of
Distributional Cues. Journal of Memory and Language, 35(4), 606—621.

https://doi.org/10.1006/jmla.1996.0032

51



oNOYTULT D WN =

Journal of Cognitive Neuroscience Page 52 of 64

Saffran, J. R., Newport, E. L., Aslin, R. N., Tunick, R. A., & Barrueco, S. (1997). Incidental
Language Learning: Listening (and Learning) Out of the Corner of Your Ear. Psychological
Science, 8(2), 101-105. https://doi.org/10.1111/j.1467-9280.1997.tb00690.x

Schapiro, A. C., Gregory, E., Landau, B., McCloskey, M., & Turk-Browne, N. B. (2014). The
Necessity of the Medial Temporal Lobe for Statistical Learning. Journal of Cognitive
Neuroscience, 26(8), 1736—1747. https://doi.org/10.1162/jocn_a_00578

Schapiro, A. C., Kustner, L. V., & Turk-Browne, N. B. (2012). Shaping of Object Representations
in the Human Medial Temporal Lobe Based on Temporal Regularities. Current Biology,
22(17), 1622-1627. https://doi.org/10.1016/j.cub.2012.06.056

Schapiro, A. C., Rogers, T. T., Cordova, N. I., Turk-Browne, N. B., & Botvinick, M. M. (2013).
Neural representations of events arise from temporal community structure. Nature
Neuroscience, 16(4), 486—492. https://doi.org/10.1038/nn.3331

Schapiro, A. C., Turk-Browne, N. B., Botvinick, M. M., & Norman, K. A. (2017). Complementary
learning systems within the hippocampus: A neural network modelling approach to
reconciling episodic memory with statistical learning. Philosophical Transactions of the
Royal Society B: Biological Sciences, 372(1711), 20160049.
https://doi.org/10.1098/rstb.2016.0049

Schneider, J. M., Scott, T. L., Legault, J., & Qi, Z. (2024). Limited but specific engagement of the
mature language network during linguistic statistical learning. Cerebral Cortex, 34(4),
bhael23. https://doi.org/10.1093/cercor/bhael23

Sherman, B. E., Aljishi, A., Graves, K. N., Quraishi, I. H., Sivaraju, A., Damisah, E. C., & Turk-

Browne, N. B. (2023). Intracranial Entrainment Reveals Statistical Learning across Levels

52



Page 53 of 64

oNOYTULT D WN =

Journal of Cognitive Neuroscience

of Abstraction. Journal of Cognitive Neuroscience, 35(8), 1312—-1328.
https://doi.org/10.1162/jocn_a_02012

Sherman, B. E., Graves, K. N., Huberdeau, D. M., Quraishi, I. H., Damisah, E. C., & Turk-Browne,
N. B. (2022). Temporal Dynamics of Competition between Statistical Learning and
Episodic Memory in Intracranial Recordings of Human Visual Cortex. The Journal of
Neuroscience, 42(48), 9053—-9068. https://doi.org/10.1523/JNEUROSCI.0708-22.2022

Sherman, B. E., Graves, K. N., & Turk-Browne, N. B. (2020). The prevalence and importance of
statistical learning in human cognition and behavior. Current Opinion in Behavioral
Sciences, 32, 15-20. https://doi.org/10.1016/j.cobeha.2020.01.015

Sherman, B. E., & Turk-Browne, N. B. (2020). Statistical prediction of the future impairs episodic
encoding of the present. Proceedings of the National Academy of Sciences, 117(37),
22760-22770. https://doi.org/10.1073/pnas.2013291117

Sjuls, G. S., Harvei, N. N., & Vulchanova, M. D. (2023). The relationship between neural phase
entrainment and statistical word-learning: A scoping review. Psychonomic Bulletin &
Review. https://doi.org/10.3758/s13423-023-02425-9

Sliwinska, M. W., Khadilkar, M., Campbell-Ratcliffe, J., Quevenco, F., & Devlin, J. T. (2012). Early
and Sustained Supramarginal Gyrus Contributions to Phonological Processing. Frontiers
in Psychology, 3. https://doi.org/10.3389/fpsyg.2012.00161

Smalle, E. H. M., Daikoku, T., Szmalec, A., Duyck, W., & Moétténen, R. (2022). Unlocking adults’
implicit statistical learning by cognitive depletion. Proceedings of the National Academy

of Sciences, 119(2), e2026011119. https://doi.org/10.1073/pnas.2026011119

53



oNOYTULT D WN =

Journal of Cognitive Neuroscience Page 54 of 64

Szaflarski, J. P., Binder, J. R., Possing, E. T., McKiernan, K. A., Ward, B. D., & Hammeke, T. A.
(2002). Language lateralization in left-handed and ambidextrous people: fMRI data.
Neurology, 59(2), 238-244. https://doi.org/10.1212/WNL.59.2.238

Tramoni-Negre, E., Lambert, I., Bartolomei, F., & Felician, O. (2017). Long-term memory deficits
in temporal lobe epilepsy. Revue Neurologique, 173(7-8), 490-497.
https://doi.org/10.1016/j.neurol.2017.06.011

Turk-Browne, N. B., Scholl, B. J., Chun, M. M., & Johnson, M. K. (2009). Neural Evidence of
Statistical Learning: Efficient Detection of Visual Regularities Without Awareness.
Journal of Cognitive Neuroscience, 21(10), 1934-1945.
https://doi.org/10.1162/jocn.2009.21131

Tustison, N. J., Cook, P. A., Holbrook, A. J., Johnson, H. J., Muschelli, J., Devenyi, G. A., Duda, J.
T., Das, S. R., Cullen, N. C., Gillen, D. L., Yassa, M. A, Stone, J. R., Gee, J. C., & Avants, B.
B. (2021). The ANTsX ecosystem for quantitative biological and medical imaging.
Scientific Reports, 11(1), 9068. https://doi.org/10.1038/s41598-021-87564-6

Uddin, L. Q. (2015). Salience processing and insular cortical function and dysfunction. Nature
Reviews Neuroscience, 16(1), 55—61. https://doi.org/10.1038/nrn3857

Uddin, L. Q., Nomi, J. S., Hébert-Seropian, B., Ghaziri, J., & Boucher, O. (2017). Structure and
Function of the Human Insula. Journal of Clinical Neurophysiology, 34(4), 300-306.
https://doi.org/10.1097/WNP.0000000000000377

van Asselen, M., Almeida, I., Andre, R., Januario, C., Freire Goncalves, A., & Castelo-Branco, M.

(2009). The role of the basal ganglia in implicit contextual learning: A study of

54



Page 55 of 64 Journal of Cognitive Neuroscience

Parkinson’s disease. Neuropsychologia, 47(5), 1269-1273.

https://doi.org/10.1016/j.neuropsychologia.2009.01.008

oNOYTULT D WN =

Visser, M., Jefferies, E., Embleton, K. V., & Lambon Ralph, M. A. (2012). Both the Middle

11 Temporal Gyrus and the Ventral Anterior Temporal Area Are Crucial for Multimodal

13 Semantic Processing: Distortion-corrected fMRI Evidence for a Double Gradient of

16 Information Convergence in the Temporal Lobes. Journal of Cognitive Neuroscience,

18 24(8), 1766—1778. https://doi.org/10.1162/jocn_a_00244

2 Wang, H. S., Kohler, S., & Batterink, L. J. (2023). Separate but not independent: Behavioral

23 pattern separation and statistical learning are differentially affected by aging. Cognition,
239, 105564. https://doi.org/10.1016/j.cognition.2023.105564

28 Wang, H. S., Rosenbaum, R. S., Baker, S., Lauzon, C., Batterink, L. J., & Kohler, S. (2023). Dentate
Gyrus Integrity Is Necessary for Behavioral Pattern Separation But Not Statistical

33 Learning. Journal of Cognitive Neuroscience, 35(5), 900-917.

35 https://doi.org/10.1162/jocn_a_01981

38 Wilkinson, L., & Jahanshahi, M. (2007). The striatum and probabilistic implicit sequence

40 learning. Brain Research, 1137(1), 117-130.

43 https://doi.org/10.1016/j.brainres.2006.12.051

45 Yu, M., Song, Y., & Liu, J. (2022). The posterior middle temporal gyrus serves as a hub in

48 syntactic comprehension: A model on the syntactic neural network. Brain and

50 Language, 232, 105162. https://doi.org/10.1016/j.bandl.2022.105162

59 55



oNOYTULT D WN =

Journal of Cognitive Neuroscience

Zhang, M., Riecke, L., & Bonte, M. (2021). Neurophysiological tracking of speech-structure
learning in typical and dyslexic readers. Neuropsychologia, 158, 107889.

https://doi.org/10.1016/j.neuropsychologia.2021.107889

56

Page 56 of 64



Page 57 of 64

oNOYTULT D WN =

Journal of Cognitive Neuroscience

Appendix B
INITIAL CHARACTERIZATION ANALYSIS LME ANALYSIS
Word  Syllable Word + Total Proportion Est'imated p-value
syllable coverage word marginal mean

Amygdala 2 7 0 55 0.04 0.273 ns
Caudal Anterior Cingulate 0 2 0 4 0.00 0.524 ns
Caudal Middle Frontal 0 0 0 3 0.00 1.674 ns
Caudate 0 0 1 1 1.00 2.809 ns
Cuneus 0 0 0 7 0.00 -0.193 ns
Entorhinal 0 0 0 9 0.00 -0.009 ns
Fusiform 1 1 1 15 0.13 0.319 ns
Hippocampus 4 12 2 163 0.04 0.105 ns
Inferior Parietal 0 2 0 11 0.00 -0.356 ns
Inferior temporal 3 3 0 7 0.43 1.512 *k
Insula 6 52 28 169 0.20 0.974  ***
Isthmus Cingulate 1 2 0 13 0.08 0.077 ns
Lateral Occipital 0 2 0 9 0.00 -0.503 ns
Lateral Orbitofrontal 1 6 0 13 0.08 0.513 ns
Lingual 0 0 0 9 0.00 -0.222 ns

Medial Orbitofrontal 1 5 0 13 0.08 -0.347 ns
Middle Temporal 8 39 11 128 0.15 0.806 ok
Paracentral 1 1 1 8 0.25 1.906 *xk
Parahippocampal 0 1 0 0.00 1.717 ns
Pars Opercularis 0 2 1 4 0.25 1.522 *
Pars Orbitalis 0 0 0 1 0.00 0.268 ns
Pars Triangularis 1 5 0 21 0.05 0.512 ns
Pericalcarine 0 0 0 2 0.00 -0.607 ns
Postcentral 1 4 1 13 0.15 1.419 ok
Posterior Cingulate 0 2 1 6 0.17 1.313 *
Precentral 1 3 2 17 0.18 1.803 ok
Precuneus 0 3 0 4 0.00 0.257 ns
Putamen 0 2 0 3 0.00 0.386 ns
Rostral Anterior Cingulate 0 0 0 0.00 0.229 ns
Rostral Middle Frontal 0 4 0 11 0.00 -0.011 ns
Superior Frontal 0 7 1 23 0.04 0.773 *
Superior Parietal 0 2 0 8 0.00 0.134 ns
Superior Temporal 0 8 12 33 0.36 2.105 *Ex
Supramarginal 0 4 3 12 0.25 1.483 ok
Transverse Temporal 0 0 2 2 1.00 6.2 *kk
Unclassified 0 3 0 11 0.00 0.067 ns

Appendix A. Summary of main sEEG neural entrainment results including only grey matter electrode contacts. The first column
(Initial characterization analysis) shows the number of entrained electrode contacts at each frequency of interest. The second
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column (LME analysis) shows the regions that had significant above-zero zITC scores. fincludes word and word+syllable. * p <
.05; **p <.01; *** p <.001; ns = not significant.
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1. Structured Exposure 2. Target Detection Task (implicit)
ba fu ko re ge me fe ti su ru pu ni Syllable
frgq;::“: Press SPACE when you hear this sound:
R z

ru

) bafukoregemerupunifetisuregemerupunibafuko...

ba fu ko re ge me fe ti su ru pu ni Word

frequency:
1.11 Hz

3. Familiarity Rating Task (explicit) 4. Random Exposure (control)
. . da go bu ku pi la do tu pa ro bi ti

How familiar does this sound? Syllable
frequency:

fetisu 3.33Hz
No hidden

1-2-3-4 words

4 words: fetisu 4 partwords: fetiru 4 nonwords: refuti

Figure 1: Task design and experimental procedure. Patients first listened to a 5.4-minute structured speech
stream that contained four embedded trisyllabic words. Next, they performed the target detection task,
where they listened to shorter snippets of the structured exposure stream and reacted to a specific syllable
in each stream. Then, patients completed the familiarity rating task, where they rated the familiarity of the
three word types (word, partword, nonword) on a scale from 1 to 4. Finally, patients listened to a control
speech stream in which new syllables were presented in a pseudorandom order with no underlying word
structures.
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Mean RT (s)
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Figure 2: Results from target detection and familiarity rating tasks. (A) Target detection task. Data shown
for 17 patients (one patient was excluded from this analysis). On average, patients had faster RTs to the
syllables in the second and third position within words compared to syllables in the first position. (B)
Familiarity rating task. Data shown for all 18 patients. On average, patients rated words as more familiar
than both part-word and nonwords foils. Bars indicate standard error of the mean (SEM).
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40 Figure 3: Main neural entrainment results. (A) Average ITC as a function of frequency across all patients and
41 all electrode contacts. Entrainment to the word frequency (1.11 Hz) was present strongly in the structured
42 condition but not in the random condition. Entrainment to the syllable frequency (3.33 Hz) was strong in
both conditions, as expected. (B) Averaged plots of the electrode contacts across patients that showed
entrainment to the word frequency only, word+syllable frequencies, and syllable frequency only in the
structured condition. Significant ITC values were calculated at the individual level (p < .05, FDR corrected).
45 Only the electrode contacts that had significant entrainment to each profile were included in the plots.
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A Structured Condition Random Condition

© Word-only
© Word + syllable
o Syllable-only
B Word Entrainment in Structured Condition
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© Word-only
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Figure 4: Neural entrainment across the brain. Figures show the pooled electrode contacts across patients
that showed significant entrainment to the word, word+syllable, and syllable frequencies. (A) Entrainment to
the word and word+syllable frequency was observed extensively in the structured condition but not in the
random condition. (B) Word entrainment in the structured condition (includes word-only and word+syllable).
Areas with the highest number of entrained contacts include MTG, STG, insula, and supramarginal gyrus.
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Time course of neural entrainment across all contacts and patients

10 Word frequency Syllable frequency

11 0.8 T 0.8

0.6 0.6

0.4 0.4

o
Inter-Trial Coherence (ITC)

20 0.2 ! 0.2

0 5 10 15 20 25 0 5 10 15 20 25

22 Bundle number

25 Figure 5: Time-course of neural entrainment in the structured condition across all 2261 electrode contacts.
26 ITC for each frequency (word and syllable) is plotted over 26 sliding time-windows (or bundles). Thick lines
27 show the average trajectory across all patients. Thin lines show the average trajectory for each individual
28 patient. One-sample t-tests comparing slope values to zero revealed no significant change in neural

entrainment over time for either frequency (p-values > 0.05). Shaded areas indicate standard error of the
29 mean (SEM).
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Overall coverage and entrainment
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Appendix A: Overall electrode coverage and entrainment across all 18 patients. The figure shows all 2261
electrode contacts colored by whether they entrained to the word frequency only (pink), to both the word
and syllable frequencies (purple), the syllable frequency only (blue) or whether they showed no entrainment

to either frequency of interest (gray).
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