CORTEX 192 (2025) 242—270

ELSEVIER

Journal homepage: www.elsevier.com/locate/cortex

|
Available online at www.sciencedirect.com -4

ScienceDirect

Registered Report

Neural evidence for linguistic statistical learning is =

Check for

independent of rhythmic and cognitive abilities in ™

neurotypical adults

000

.M. van der Wulp “", M.E. Struiksma %, L.J. Batterink ° and

F.N.K. Wijnen *

@ Department of Languages, Literature and Communication, Institute for Language Sciences, Utrecht University,

Utrecht, the Netherlands

® Department of Psychology, Western Institute for Neuroscience, Western University, London, ON, Canada

ARTICLE INFO

ABSTRACT

Article history:

Received 30 September 2025
Revised 30 September 2025
Accepted 30 September 2025
Action Editor Elizabeth Wonnacott

Keywords:

Statistical learning
Speech segmentation
Individual differences
Neural oscillations
EEG

Phase-locking
Rhythmic abilities
Cognitive abilities

Statistical Learning (SL) is an essential mechanism for speech segmentation. Individual
differences in SL ability are associated with language acquisition. For instance, better SL
correlated with a larger vocabulary size and impaired SL was found in populations with
language impairments. The aim of the current study was to contribute to uncovering the
underpinnings of individual differences in auditory SL for word segmentation. We hy-
pothesized that individuals with better musical — specifically rhythmic — abilities would
show better SL. Participants (N = 106) were exposed to an artificial language consisting of
trisyllabic nonsense words. Electroencephalography (EEG) measures of neural entrainment to
the auditory signal allow online assessment of SL. The current study used this method to
measure individual SL performance during exposure. To assess individual differences, we
linked the neural measure of SL to a battery of tests measuring rhythmic, musical, and
cognitive abilities, as well as vocabulary size. We replicated earlier work, finding both
online (neural) and offline (behavioral) evidence of SL in our sample. In contrast to our
expectations regarding individual differences, we found evidence for the null hypothesis
regarding correlations between the tests of rhythmic ability and the neural measurement
of SL. Exploratory analyses concerning working memory remained inconclusive, while
exploratory analyses regarding vocabulary size yielded moderate evidence for a small
correlation with the neural measure of SL. Overall, our results suggest that linguistic SL is
largely independent from abilities in other cognitive domains, including rhythmic pro-
cessing and musical abilities, as measured within a sample of healthy, typically developed
adults.
© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC
BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction
1.1. Statistical learning for speech segmentation

Individuals acquiring a new language untutored face the
challenge of speech segmentation’: dividing the continuous
streams of speech sounds they hear in their environment into
meaningful words. This is an important (first) step in
acquiring a vocabulary and it is fundamentally linked to
further linguistic development (Erickson & Thiessen, 2015;
Evans et al.,, 2009; Newman et al., 2016; Rodriguez-Fornells
et al.,, 2009; Siegelman, 2020; Singh et al., 2012; Zhang et al.,,
2021).

Statistical learning (SL) is thought to support speech seg-
mentation and refers to the process of becoming sensitive to
the statistical structure of a stimulus stream (Saffran, Aslin
et al.,, 1996; Saffran, 2003). The statistical structure useful for
segmenting continuous speech can be quantified as transi-
tional probabilities between neighboring syllables?; the proba-
bility that a syllable X is directly followed by a syllable Y, given
the overall frequency of X (Saffran, Newport et al., 1996). In
natural language, transitional probabilities are higher for
syllable transitions within words than for syllable transitions
spanning word boundaries (Saffran, 2003). Transitional prob-
abilities can thus serve as a statistical cue for the learner as to
where a word boundary is likely to occur.

Research assessing SL in the laboratory has found salient
inter-individual differences in SL performance (e.g., Batterink
& Paller, 2017; Bogaerts et al., 2022), which have been linked to
individual variability in language acquisition (Erickson &
Thiessen, 2015; Siegelman, 2020; Singh et al., 2012). Howev-
er, it is currently still unknown which factors underlie these
individual differences. Therefore, the aim of the current study
was to contribute to the knowledge in the field regarding the
underpinnings of individual differences in auditory SL for
word segmentation.

1.2.  Assessing statistical learning in the laboratory

Using artificial language learning paradigms, multiple exper-
imental studies have found that both adults and infants are
able to use SL to segment ‘words’ (multi-syllabic sequences)
from a continuous speech stream (e.g., Batterink & Paller,
2017; Choi et al., 2020; Francois, Chobert et al., 2012; Pinto
et al,, 2022; Saffran, Aslin et al., 1996; Saffran, Newport et al.,
1996; Schon & Frangois, 2011). These studies typically
employ a familiarization phase in which participants passively
listen to the stimulus stream made up of the concatenated
words without any pauses or other acoustic cues to word
boundaries. This phase is then followed by a test phase in
which participants usually perform a two-alternative forced
choice (2AFC) task. In this task, participants hear ‘words’
(previously presented patterns) and ‘foils’ (syllables presented
in a recombined order) and are asked to identify the

! This is also frequently referred to as word segmentation.

2 Syllables are a basic unit of spoken language (e.g., Poeppel &
Assaneo, 2020) and therefore transitional probability computa-
tions are made based on neighboring syllables for speech
segmentation.

previously presented words. The rationale is that accuracy on
the 2AFC task above chance level (50%) provides evidence that
the participant has successfully acquired the patterns through
SL.

However, the 2AFC task has often been criticized for tap-
ping into explicit memory and meta-cognitive decision mak-
ing (Bogaerts et al., 2022; Francois, Tillmann et al.,, 2012).
Alternatively, other tasks have been proposed to probe SL
outcomes by evaluating the expression of implicit memory. SLis
often referred to as ‘implicit learning’ (Erickson & Thiessen,
2015; Perruchet & Pacton, 2006) and, when measured by im-
plicit memory tasks, can reveal learning in the absence of
explicit knowledge or awareness of the regularities (Arciuli,
2017; Batterink et al., 2015, 2019; Schon & Francois, 2011).
One task that was designed to tap into implicit memory of
statistical regularities in speech input is the target detection
task (TDT; Batterink, 2017; Batterink et al., 2015; Batterink &
Paller, 2017, 2019; Kim et al., 2009; Moreau et al., 2022; Turk-
Browne et al., 2005). In this task, participants are presented
with a target syllable and subsequently hear a shortened
version of the stimuli presented during the familiarization
phase. They are asked to press a button as quickly and accu-
rately as possible when they hear the target syllable in the
stimulus stream. If participants have learned the tri-syllabic
words, they should show a gradual facilitation pattern
expressed by faster reaction times (RTs) towards the word-
final syllables, which are the most predictable compared to
the second and first syllable.

Implicit measures such as the TDT are a step in the right
direction for assessing SL in the laboratory. However, they are
still administered after the familiarization phase and are thus
also unable to access the learning process itself (e.g., Bogaerts
etal., 2022; Schon & Francois, 2011). It has been proposed that
SL for word segmentation is a two-step process, which starts
with identification of the individual word forms — the process
of segmenting the speech input — followed by long-term
memory formation for these extracted word forms
(Batterink & Paller, 2017; Erickson & Thiessen, 2015;
Rodriguez-Fornells et al., 2009). The conventional techniques
probe the second of these steps and therefore can only provide
indirect evidence on the first step. A promising new avenue in
SL research is therefore the recording of neural oscillations
through electroencephalography (EEG) during the familiarization
phase (Batterink & Paller, 2017, 2019; Choi et al., 2020; Moreau
et al., 2022; Pinto et al., 2022; Zhang et al., 2021). Neural os-
cillations have previously been shown to phase-lock® to the
rhythm of a perceived auditory stimulus such as language
(Daikoku & Goswami, 2022; Giraud & Poeppel, 2012; Peelle &
Davis, 2012). Batterink and Paller (2017) captured this neural
entrainment to the speech streams by computing the Inter-
Trial Coherence (ITC) to the frequencies corresponding to the
presentation rate of the syllables (3.3 Hz; each syllable was
presented every 300 msec) and the tri-syllabic words (1.1 Hz;
900 msec). Their results showed that there was progressively
more phase-locking during exposure at the word frequency —
as indicated by an increasing ITC over time — along with
decreasing phase-locking at the syllable frequency in the

3 Also: entrain, synchronize. The phase of the neural oscillations
aligns with the phase of the input signal.
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structured speech stream. From these ITC values, the authors
computed a Word Learning Index (WLI), which provides a rela-
tive measure of sensitivity to the trisyllabic structure of the
input in the structured condition:

WLI = ITcword frequency

ITCsyHable frequency

Thus, the WLI increased during exposure to the structured
stream. This was contrasted to a control condition
comprising of a random speech stream which did not contain
underlying regularities, and the WLI in this condition did not
change over time. The WLI furthermore correlated signifi-
cantly with individual performance on the TDT. Thus, the
study by Batterink and Paller (2017), as well as subsequent
experiments with the same frequency-tagging paradigm
(Batterink & Paller, 2019; Choi et al., 2020; Moreau et al., 2022;
Pinto et al., 2022; Zhang et al., 2021), provide evidence that
EEG-based neural entrainment can be used to index the on-
line process of word identification during SL. This measure
provides valuable insights into the speech segmentation
process, complementing the traditional offline learning
outcome approaches.

1.3. Individual differences in statistical learning

Many SL studies report individual differences among partici-
pants, which can be quantified as either differences in
learning outcomes, or differences in learning speed or tra-
jectories (Bogaerts et al., 2022). This indicates that SL is not a
capacity that everyone intrinsically possesses to the same
degree or that follows the same timeline of learning (e.g.,
Batterink & Paller, 2017; Erickson & Thiessen, 2015; Francois,
Tillmann et al., 2012; Misyak & Christiansen, 2012; Misyak
et al., 2010; Siegelman, 2020; Siegelman & Frost, 2015).

There are also indications that SL ability is associated with
individual differences in language acquisition, particularly
delays or disorders in language development (Evans et al,,
2009; Gabay et al., 2015; Lammertink et al., 2017; Newman
et al, 2016; Singh et al., 2012; Vandermosten et al., 2019;
Zhang et al., 2021). Specifically, earlier research found a rela-
tionship between SL in speech segmentation experiments and
vocabulary development in children (Evans et al., 2009;
Newman et al., 2016; Singh et al., 2012). In these (longitudi-
nal) experiments, SL performance correlated positively with
vocabulary size. Moreover, several studies point to a SL deficit
in individuals diagnosed with developmental language dis-
order (DLD; e.g., Evans et al., 2009; Lammertink et al., 2017). On
the other hand, the evidence for a SL deficit in developmental
dyslexia (henceforth ‘dyslexia’) is mixed, with some studies
finding evidence in favor of a SL deficit or delay in dyslexia
(Gabay et al., 2015; Kerkhoff et al., 2013; Vandermosten et al.,
2019; Zhang et al., 2021) while other studies do not find a dif-
ference between dyslexia and control groups for SL (Schmalz
et al., 2017; van Witteloostuijn et al., 2019). The available evi-
dence in favor of SL abilities predicting vocabulary outcomes
as well as deficits in language disordered populations have
yielded theories of individual differences in SL as an impor-
tant predictor of language acquisition, including in the typi-
cally developing population (e.g., Conway et al., 2010; Erickson
& Thiessen, 2015; Misyak et al., 2010; Siegelman, 2020).

If SL is indeed an important predictor of language devel-
opment, an open question is: what underlies individual dif-
ferences in SL, which in turn might predict inter-individual
variation in language attainment? In order to better under-
stand how language learners solve the speech segmentation
problem, and why some individuals do this with ease while
others might struggle — which may even culminate into a
language impairment — we need to know more about the un-
derpinnings of individual differences in SL. We fundamentally
map SL as a multifaceted construct involving multiple cogni-
tive and task-related components that might predict the in-
dividual differences in SL (Arciuli, 2017; Bogaerts et al., 2022;
Siegelman, 2020; Siegelman & Frost, 2015). This is not to
argue that an individual's SL capacity can be explained
entirely by other cognitive factors, but we commit to the idea
that SL can be influenced by them in a multi-faceted and
complex manner (following Erickson and Thiessen (2015), for
instance). This influence can lead to either facilitation or
impairment of the SL process and thus predict inter-
individual variability on SL tasks. We now turn to the ques-
tion of which cognitive components are plausible candidates
to influence individual differences in SL.

1.4. Cognitive abilities and statistical learning abilities

Multiple cognitive abilities have been theorized to contribute
to individual differences in SL. One such ability is working
memory (Arciuli, 2017; Misyak & Christiansen, 2012; Smalle
et al., 2022). However, in contrast to theoretical proposals,
previous empirical research has not found conclusive evi-
dence that individual differences in working memory predict
domain-general SL ability. Studies either failed to find signif-
icant correlations at all (Conway et al., 2010; Siegelman &
Frost, 2015), or found a relation only for SL of adjacent pat-
terns but not for SL of non-adjacent patterns® (Misyak &
Christiansen, 2012). Moreover, Smalle et al. (2022) used a
different method that not only measured individuals’ working
memory capacity but overloaded it, and interestingly found a
significant improvement of SL ability for implicit word seg-
mentation when high cognitive demand was induced. In
contrast, Palmer and Mattys (2016) also imposed a cognitive
load task on their participants, and found disrupted SL.
Another individual ability that has more recently been
associated with speech segmentation is audio-motor syn-
chronization. Assaneo et al. (2019) demonstrated that SL is
better in individuals who show enhanced synchronization to
an auditory speech rhythm on a behavioral level compared to
individuals who do not synchronize. They developed a new
task called the Speech-to-Speech Synchronization (SSS) task
(further details of the task protocol: Lizcano-Cortés et al.,
2022), where participants are instructed to repeat a

* Adjacent patterns are transitional probabilities between
neighboring items such as syllables used for word segmentation,
thus the probability of XY given the overall frequency of X (pre-
viously explained in section 1.1). Non-adjacent dependencies
have intervening items, consisting of patterns like X[Z]Y, where X
predicts Y over intervening Z.
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whispered ‘tah’ while listening to an isochronous’® random-
ized stream of syllables and recall if certain syllables were
presented in the stream. Crucially, participants are not
explicitly instructed to synchronize their whispering to the
rhythm of the syllable stream, but it turns out that some do.
This task revealed a bimodal distribution of individuals,
where participants could be divided into high and low syn-
chronizers. High synchronizers — i.e., those who spontane-
ously adjusted their speech rhythm to the rhythm of the input
— subsequently performed better than low synchronizers on a
separate behavioral speech segmentation SL task. Further-
more, in a subsequent passive listening phase while recording
magnetoencephalography (MEG), high synchronizers showed
greater neural phase-locking to an external rhythmic syllable
stream, specifically in the left inferior and middle frontal gyri,
relative to low synchronizers. Additionally, differences in
neural structure were found between groups, with the high
synchrony group showing enhancement of the arcuate
fasciculus white matter tract connecting the auditory and
motor cortices. Moreover, the authors also found a significant
correlation between white matter volume in the left arcuate
fasciculus and the brain-to-stimulus synchronization. Thus,
relative to low synchronizers, high synchronizing individuals,
defined as those who spontaneously synchronize their speech
rhythm to an external speech rhythm more closely: (1)
showed greater neural phase-locking to the rhythm of spoken
input during passive listening, (2) showed enhanced white
matter connectivity between auditory and motor cortices,
which significantly correlated with brain-to-stimulus syn-
chronization, and (3) performed better in a behavioral SL word
segmentation task. The authors hypothesized that the high
synchronizers' increased neural entrainment reflects the
synchronization of attentive processing to syllable onsets and
facilitates speech parsing. This would then lead to better
extraction of the transitional probabilities between syllables,
underlying successful word segmentation.

Finally, another body of research indicates that musical
training positively influences both speech and music pro-
cessing, as well as SL (Francois, Chobert et al., 2012; Mandikal
Vasuki et al., 2017; Schon & Francois, 2011; Shook et al., 2013).
Specifically, Francois et al., 2012 conducted a two-year longi-
tudinal study in which they compared effects of musical
versus painting training on SL ability in two groups of 8-year-
old children (starting age). All children were tested on their SL
performance segmenting a sung artificial language® at the
beginning of the study, after one year, and after two years.
Before training SL ability did not differ between the groups,
but after two years SL performance significantly improved in
the music-training group only, and not in the painting group.
Interestingly, in a different publication, Francois et al., 2012
hypothesized that musical training may improve SL through
strengthening and/or more efficient reorganization of the

° Happening at regular intervals. In this case, all syllables were
222 msec long, creating a constant syllable frequency of 4.5 Hz
(see Assaneo et al., 2019, p. 7).

6 All studies reported in this section did not use purely speech
stimuli, but all used stimuli that are (combined with) tones or
Morse codes. To our knowledge, no experiment has explicitly
made a connection between musical ability and SL of speech.

auditory dorsal pathway. This dorsal pathway, originally
proposed by Hickok and Poeppel (2007) as part of their dual-
stream model of language processing, maps sensory (phono-
logical) representations from the auditory cortex onto articu-
latory motor representations in the motor cortex. It is
hypothesized to be critical for spoken language acquisition;
auditory-motor coupling is essential for learning how to speak
(Hickok & Poeppel, 2007; Rodriguez-Fornells et al., 2009) and
has been hypothesized to be a neural substrate of speech
segmentation through SL (Rodriguez-Fornells et al., 2009).

1.5. Rhythmic ability and statistical learning

Importantly, the brain areas described in Assaneo et al. (2019)
where the concentration of white matter was greater and
where more neural synchronization was found in the high
synchronizing group (left lateralized arcuate fasciculus; left
inferior and middle frontal gyri) correspond to the left dorsal
pathway (Poeppel and Assaneo, 2020). This converges with the
hypothesis by Francois et al., 2012 that the dorsal pathway
might be improved in musically trained individuals and that
this might benefit SL for speech segmentation. However,
Assaneo et al. (2019) noted that musical experience alone did
not explain their bimodally distributed results. As musical
ability has been found to be heritable (Gingras et al., 2015), it
may also be the case that the dorsal stream is organized more
efficiently as part of the neurological substrate of innate
musical ability. For instance, Zuk et al. (2022) found significant
correlations between white matter pathway volumes in in-
fancy and subsequent musical aptitude. Moreover, they found
significant correlations between musical aptitude and lan-
guage measures, as well as direct correlations between lan-
guage skills and the white matter tracts that also correlated
with musical aptitude. The authors found no significant cor-
relations involving the arcuate fasciculus — which is part of
the aforementioned auditory dorsal stream — but indicate that
“this is likely due to the reduced overall number of reliable
reconstructions in these temporal neural pathways in in-
fancy, resulting in an insufficient sample size (n < 17)” (p. 6).
Taken together, white matter structures in similar areas are
important for both language and music abilities, and already
in infancy individual differences in volume of at least some of
these structures can predict musical and linguistic aptitude.
More imaging research and larger sample sizes are warranted
to further investigate this.

A critical component of musical ability that was frequently
linked to language outcomes is rhythm perception ability
(Ladanyi et al., 2020; Langus et al., 2023; Nitin et al., 2023; Zuk
et al., 2022). Rhythmic structure such as the hierarchical or-
ganization of meters,” is a shared feature of language and
music (e.g., Asano, 2022; Poeppel & Assaneo, 2020). Recent
research shows that both musical rhythm and linguistic
rhythm are processed through synchronization of neural os-
cillations to hierarchically nested frequencies that are present
in both language and music (Daikoku & Goswami, 2022;
Fiveash et al., 2021; Giraud & Poeppel, 2012; Liberto et al,,
2020; Menn et al., 2022; Peelle & Davis, 2012; Poeppel &
Assaneo, 2020; Tierney & Kraus, 2015). Furthermore, rhythmic

7 Regular patterns of strong and weak beats.
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ability — the ability to accurately detect and (behaviorally)
synchronize to an auditory pulse — has been found to predict
language development (Bekius et al., 2016; Ladanyi et al., 2020;
Langus et al,, 2023; Nitin et al., 2023; Zuk et al.,, 2022). In
addition, several studies indicate that atypical rhythm sensi-
tivity correlates with linguistic impairments (Boll-Avetisyan
et al.,, 2020; Caccia & Lorusso, 2020; Fiveash et al., 2021;
Flaugnacco et al., 2014; Huss et al., 2011; Kraus et al., 2014;
Laddanyi et al., 2020; Sallat & Jentschke, 2015).

Previous literature points out that more precise phase-
locking of neural oscillations to an auditory input is hypoth-
esized to reflect optimal processing — as the syllable onsets
align with the phase of neural oscillations (e.g., Assaneo et al.,
2019; Peelle & Davis, 2012; Poeppel & Assaneo, 2020). As earlier
mentioned, neural entrainment can also be used to measure
individual SL ability online (e.g., Batterink & Paller, 2017, 2019;
Moreau et al., 2022; Pinto et al., 2022). Is an efficiency in phase-
locking perhaps supported by rhythmic abilities relevant for
both music and language processing, such as rhythmic motor
synchronization and deducing metrical structures? Neurally,
this could be indicated by a strengthened dorsal pathway
between the auditory and motor cortices. Thus, is specifically
rhythmic ability an underlying mechanism supporting SL, and
are neural oscillations phase-locking to the rhythm of an
auditory stimulus the neural mechanism indicative of SL
during speech segmentation?

1.6. Current study

The aim of the current study is to contribute to the under-
standing of the neurocognitive underpinnings of individual
differences in auditory SL for word segmentation. We inves-
tigated SL both online during familiarization by quantifying
neural entrainment to the underlying statistical structure of
the speech input, as well as offline in behavioral word recog-
nition tasks in the test phase. Online measurement of SL was
performed using EEG and the frequency-tagging methodology
similar to earlier publications (e.g., Batterink & Paller, 2017,
2019; Moreau et al.,, 2022; Pinto et al.,, 2022). The current
study is an extension of prior work in multiple ways. In order
to investigate individual differences, we measured partici-
pants’ performance on tasks assessing musical, rhythmic,
linguistic, and general cognitive abilities. We then related
these scores to the neural measure of SL. To our knowledge, a
relation between musical/rhythmic abilities and SL specif-
ically for word segmentation has not previously been
researched. Furthermore, the online EEG entrainment mea-
sure of SL also has not yet been related to tasks assessing
individual differences. See Fig. 1 and the paragraphs below for
our predictions regarding the individual differences and SL.
We predicted that rhythmic abilities would positively
correlate with SL performance. We tested rhythm perception
using two tasks (Harrison & Miillensiefen, 2018a, 2018b;
Zentner & Strauss, 2017). We predicted these tasks to be
positively correlated, but we used multiple tasks to be sure
that we measured rhythm perception as accurately as
possible. We also measured behavioral rhythmic speech-to-
speech entrainment by using the SSS task (Assaneo et al.,
2019). We expected performance on this task to also be a
predictor of SL, which would replicate a key finding reported

by Assaneo et al. (2019). We further investigated interrelations
between these rhythm tasks, the SSS task, and SL ability (see
section 2.6 for details). In addition, we exploratively added a
questionnaire about general musical ability and musical
training experience (Bouwer et al., 2016; Miillensiefen et al.,,
2014).

Moreover, we broadened our search for individual differ-
ences in SL to general cognitive abilities by adding the forward
Digit Span (Wechsler, 2008) as an indication of working
memory capacity. We chose to use the forward Digit Span and
not the backward Digit Span because the forward span is
associated with verbal working memory and depends on the
phonological loop, which is the most relevant for our study.
The backward Digit Span, however, is more associated with
executive functioning and cognitive control (e.g., Ostrosky-
Solis & Lozano, 2006). As earlier studies mentioned in 1.4 did
not find conclusive evidence on a connection between work-
ing memory and SL using post-learning tests, we exploratively
investigated whether working memory aids SL online.

In addition, we administered a vocabulary test (Dunn &
Dunn, 1998; Schlichting, 2005), adding to the earlier
mentioned body of research with children (Evans et al., 2009;
Newman et al., 2016; Singh et al., 2012) and extending this
question into adulthood. Misyak and Christiansen (2012) have
also assessed vocabulary in adults, where it correlated
marginally with print exposure but not with SL. However,
their vocabulary assessment differed from ours — described in
2.3.3.d — in that it required participants to choose a synonym
for a target word, whereas our vocabulary test required par-
ticipants to choose a picture corresponding to the meaning of
a target word. Therefore, analogous to earlier research with
children, we predicted a positive relation between SL and
vocabulary size.

Finally, even though this experiment aimed to answer the
new questions above, it is also a partial replication and
extension of earlier experiments (Assaneo et al, 2019;
Batterink & Paller, 2017; Pinto et al., 2022). We therefore ex-
pected to find comparable results to these earlier studies,
consisting of increasing phase-locking to the word-frequency
over the course of exposure in the structured condition, but
not in an unstructured random condition (Batterink & Paller,
2017; Pinto et al., 2022). We also predicted a replication of
the behavioral results of Batterink and Paller (2017) in the
tasks of explicit and implicit memory of the words, which
would also be in line with our pilot results (appendix B in the
supplementary data). Moreover, we tested if the neural mea-
sure of SL correlated positively with the behavioral tasks
(Batterink & Paller, 2017). We extend this prior work because
the participants in the current study were speakers of Dutch,
and the stimuli we used were newly created and adhere to
Dutch phonotactics.? Finally, we expected to replicate the
finding of an SL advantage in participants with a higher syn-
chronizing ability as expressed by the phase-locking value (PLV)
of their speech in the SSS task (Assaneo et al., 2019).

& More details on the methodology used to create these stimuli
are described in van der Wulp et al. (2022). See also appendix B in
the supplementary data for details on a pilot experiment with
these stimuli.
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Spontaneous
Synchronization of Speech

Rhythmic Ability

Working Memory

Individual differences in
Statistical Learning

Vocabulary size

Fig. 1 — Predictions of the current study represented graphically.

2. Materials and methods
2.1 Participants

A total of 106 adults (88 F; 17 M; 1 X) participated in this study.
Due to an unexpected termination of the test session, one
participant only completed the Gold-MSI and the SL-part of
the experiment and thus has missing data for the other tasks
for individual differences. Participants were all native
speakers of Dutch and between 18 and 35 years old (M = 23.37,
SD = 4.22). Participants attended university (N = 101) or
applied university (N = 5) as their highest educational level.

The experiment was approved by the Linguistics Chamber
of the Faculty Ethics Assessment Committee of Humanities at
Utrecht University (reference number: LK-22-174-02), and
participants were compensated with a €20 gift card for their
time (the session took approximately two hours).

2.1.1. Bayesian updating procedure

We started with an initial sample of 45 participants, identical
to Batterink and Paller (2017). Then, we performed Bayesian
Updating (Rouder, 2014), by repeating the statistical analyses
after every added sample of 15 participants, until the
threshold value of a Bayes Factor (BF; Jeffreys, 1961) > 6
or < 1/6 would be reached for our critical analyses, or when we
would reach a maximum sample of 105 participants.® The
latter was the case. The critical analyses (marked green in the
study design table in appendix A in the supplementary data)
were the following:

e The analysis for the replication of the EEG results of
Batterink and Paller (2017; see section 2.4.1), with regard
to a difference in the WLI between the structured and
random conditions. We already found a BF;, > 1000 in the

° Due to the one participant with missing data for the indi-
vidual differences tasks except the Gold-MSI, we collected data
from 106 instead of 105 participants. See Stage 1 for simulation-
based estimates of statistical power: https://osf.io/2y6sx.

first sample of N = 45, which stayed that large with every
update (see RStudio supplement).

e The correlations between the tests for rhythmic ability (see
section 2.6), in order to be able to perform the mediation
analysis. This is the analysis that increased the sample to
N = 105. One of these correlations did not yield a BF;o > 6
until our final update (see section 3.3.).

e Evidence for or against a direct effect of audio-motor syn-
chronization (Assaneo et al., 2019) on the WLIsiructured, i
order to be able to perform the mediation analysis (see
section 2.6). We did not perform this analysis until our final
sample (see section 3.4.).

2.1.2. Exclusion criteria

Participants were not invited to participate if they reported
having a history of hearing impairments or tinnitus, AD(H)D,
other attention or concentration issues, dyslexia, or other
language-related impairments. Furthermore, data of partici-
pants was excluded for a certain task after participation in the
case of technical issues, which was the case for some partic-
ipants (N = 3) with the SSS task, where the stimuli were
audible in the recording and masked the participants’ whis-
pers. This made the PLV calculation impossible for that task.
Furthermore, data from one participant was excluded for the
target detection task because they detected fewer than 50% of
targets (26.30% detected).

2.2. Stimuli

The stimuli consisted of syllables which were combined into
tri-syllabic nonwords (from now on referred to as ‘words’) that
adhered to Dutch phonotactics and have been piloted for their
learnability (see appendix B in the supplementary data for
details on the pilot experiment). The syllable inventory con-
sisted of 12 syllables, from which four words were formed for
the structured condition:/suyita, tobamg, sytgbo, xgbyti/. In the
structured stream, the transitional probabilities of neigh-
boring syllables were 1.0 within a word and .33 between


https://osf.io/2y6sx

248 CORTEX 192 (2025) 242—270

words. The word order was pseudorandomized, such that the
same word did not repeat consecutively. More details on the
methodology used to create these stimuli are described in van
der Wulp et al. (2022).

We also created a corresponding random stream (Batterink
& Paller, 2017), which forms the random condition. In the
random condition, a different set of 12 syllables was concat-
enated in a pseudorandom order, under the constraint that
the same syllable could not consecutively repeat (as in
Batterink & Paller, 2017). This yielded a transitional probabil-
ity of .09 throughout the random condition. The syllables used
in this condition were:/da, pg, nu, dg, %o, py, ro, dy, sa, ¥y, 1i,
sg/, corresponding to set B in the pilot experiment (see
supplementary data: table C1, and see van der Wulp et al.
(2022) for more details on the methodology used to create
these stimuli).

The stimulus lists were converted to concatenated speech
without pauses using MBROLA diphone synthesis (male Dutch
voice nl2, at a monotone FO of 100 Hz; Dutoit et al., 1996). All
syllables were 300 msec long (100 msec consonant, 200 msec
vowel), creating a word-length of 900 msec. Thus, this yielded
a syllable frequency of 3.3 Hz and a word or triplet frequency
of 1.1 Hz (see Fig. 2). We generated coarticulated speech
streams of 13.5 min per condition in total, divided over three
blocks of 4.5 min. Each block was made up of 900 syllables (300
words).

We used GoldWave (GoldWave Inc., 2022) to add a linear
fade-in and fade-out of 1.5 s at the beginning and end of each
block, to avoid a segmentation cue at the beginning of the
stream. Stimuli were presented with Presentation (www.
neurobs.com). Finally, we used GoldWave to add a cue
point’® at the onset of each syllable in the continuous audio
files, so that they could be read as EEG markers with Presen-
tation. The EEG markers and their corresponding syllables can
be found in table C1 in appendix C in the supplementary data.

to ba meo su Xi ta

o

0 e ’\1 WM “”*“‘WM"

3.3Hz

1.1Hz

Fig. 2 — Stimuli and stimulus frequencies in the structured
stream. The audio represents the depicted syllables. The
syllables of the same color form a word. The green
waveform depicts the syllable frequency of 3.3 Hz. The blue
waveform depicts the tri-syllabic word frequency of 1.1 Hz.

1% For more information about cue points, see this manual.

2.3. Procedure

A schematic depiction of the experimental procedure can be
viewed in Fig. 3. Detailed descriptions of the procedure are
given in the following sections.

2.3.1. Listening task

Participants first performed the listening task in the struc-
tured condition. After this, the rating task and target detection
task (TDT; see 2.3.2.) were administered, followed by another
iteration of the listening task to the random stream. The

Listening task
Structured condition

)) ..suyitatobame suyitayebytitobamae...

Rating task
1-4 familiarity rating per item
L Q) suyita (word)

a}) tatoba (part-word)
) tibasy (non-word)

Target detection task

press as fast as you can when you hear... ta

D:})) ...suyitatobamesytebosuyitaxebytitobame...

Listening task
Random condition

)

..dadyrisaxyseroxopydenudypedyrida...

Additional tasks

CA-BAT listen: =y = which tracks had beeps on time?
listen: @ @ < were these rhythms the same?
questionnaire on musicality [f7 /7
SSStask  whisper 'tah’ while listening...«) @
Digit Span repeat: 79348... %

point to the...;z'yj

Fig. 3 — Schematic overview of the experimental procedure.
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listening task was divided into three blocks of 4.5 min per
condition, yielding 13.5 min per condition and 27 min in total
for both conditions. Participants took short self-timed breaks
between blocks.

2.3.2. Behavioral tasks of SL outcomes

Following the structured condition of the listening task, par-
ticipants performed two tasks to assess their explicit and
implicit knowledge of the words: a familiarity rating task and
a reaction-time based target detection task (TDT).

With respect to the rating task, participants were auditorily
presented with a word or foil in each trial. The foils could be of
two kinds: one being a part-word spanning a word boundary
from the stream, or a non-word made up of syllables from the
stream but recombined in an order that never appeared (see
Fig. 3; see table C2 in appendix C in the supplementary data
for the full list of foils). There were 16 trials consisting of the
four words from the listening task, all eight possible part-
words and four non-words. On each trial, participants rated
on a four-point scale how familiar the word was to them
(scale: unfamiliar — fairly unfamiliar — fairly familiar —
familiar).

The second post-learning task our participants performed
was the TDT (Batterink, 2017; Batterink et al., 2015; Batterink &
Paller, 2017, 2019). Participants were presented (auditorily and
visually) with a target syllable and subsequently heard a
shortened version of the structured condition from the
listening task, containing 16 words (4 words each repeated 4
times) corresponding to 48 syllables, and the same word not
repeated in succession. They were asked to press a button as
quickly and accurately as possible when they heard the target
syllable. For each target syllable there were three speech
streams, with the target occurring four times per stream,
resulting in 36 speech streams and 144 targets for this task.

2.3.3. Additional tasks for individual differences

a. Musical and rhythmic abilities

We employed three measures assessing rhythmic and
musical abilities of the participants. First, participants per-
formed the Computerized Adaptive Beat Alignment Test
(CA-BAT; Harrison & Miillensiefen, 2018a; 2018b), in which
participants listened to the same piece of music twice,
accompanied by beeps in two conditions. In one condition, the
beeps were synchronized with the rhythm of the music, and
in the other condition, the beeps were not synchronized with
the rhythm of the music. Participants indicated which of the
two tracks had the beeps in sync with the rhythm of the
music.

Second, participants completed the Rhythm and Accent
sub-tests of the short version of the Profile of Music Perception
Skills (PROMS; Zentner & Strauss, 2017). In this task, partici-
pants listened twice to the same rhythm and then to a third
rhythm. Participants then indicated whether the third rhythm
was identical or different compared to the first two.

Third, participants completed a self-report questionnaire
of general musical abilities: the Goldsmiths Musical Sophis-
tication Index (Gold-MSI; Miillensiefen et al., 2014), translated
to Dutch (Bouwer et al., 2016). The questionnaire consisted of

the following sub-scales: active engagement with music,
perceptual abilities, musical training, singing abilities and
emotional engagement. Participants filled out this question-
naire during EEG set-up.

b. Spontaneous Synchronization to Speech

We administered the implicit fixed version of the Speech-
to-Speech Synchronization (SSS) task (Assaneo et al., 2019;
Lizcano-Cortés et al., 2022), in which participants were
instructed to whisper ‘tah’ while listening to an isochronous
stream of syllables and recalling which syllables were pre-
sented afterwards. We had translated the instructions to
Dutch for our sample of Dutch native speakers.

c. Working memory

Participants performed a forward Digit Span (Wechsler,
2008) as an indication of working memory capacity. In this
test, the experimenter orally named digits and the participant
was instructed to repeat them. The number of digits increased
until the participant failed to remember two digit-series of the
same length.

d. Vocabulary

Finally, we administered the Dutch Peabody Picture Vo-
cabulary Test, third edition (PPVT—III-NL; Dunn & Dunn, 1998;
Schlichting, 2005) to measure the vocabulary size of our par-
ticipants. The PPVT—III-NL is a task where participants are
presented with a word and four pictures. The participant then
indicates which picture corresponds to the meaning of the
word. The test is suitable for ages 2; 3 through 90 years and is
norm-referenced for both the infant and adult population.

2.4.  EEG recording and analyses

During the listening task, EEG was recorded at a sampling rate
of 512 Hz using 64 Ag/AgCl-tipped electrodes attached to an
electrode headcap using the 10/20 system. Recordings were
made with the Active-Two system (Biosemi, Amsterdam, The
Netherlands). Additional electrodes were placed on the left
and right mastoid, above and below the left eye, and at the
outer canthi of both eyes. Scalp signals were recorded relative
to the Common Mode Sense (CMS) active electrode and then
re-referenced during data analysis to the average of the
mastoid electrodes. Impedance of the channels was kept
below 20 mV. If the impedance of a channel was higher than
this, it was labeled as a bad channel during data collection to
be interpolated during data analysis.

The EEG data was analyzed in MATLAB (The MathWorks
Inc., 2019) using EEGLAB (Delorme & Makeig, 2004) and the
ERPLAB open-source toolbox (Lopez-Calderon & Luck, 2014).
The data was bandpass filtered from .1 to 30 Hz'' and 50 Hz
notch filtered offline. Bad channels identified upon visual

11 Sixteen participants had slow drifts in their data. This made
the manual artifact rejection difficult. Therefore, their data was
filtered from .5 to 30 Hz instead. This did not influence their ITC
results at the frequencies of interest.
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inspection of the data or during data collection were inter-
polated (mean N of interpolated channels structured = 5.18;
random = 6.49). Data sections comprising large artifacts were
also identified through visual inspection and manually rejec-
ted using the EEGLAB plugin VisEd (Desjardins et al., 2019). A
channel was labeled as bad during the analysis if it was
labeled bad during data collection due to high impedance, or if
it showed frequent noise or drifts upon visual inspection of
the data. Eye movement artifacts were retained, as they are
not time-locked to the stimulus onsets and have a broad
power spectrum that does not affect the narrow-band neural
oscillations (Srinivasan & Petrovic, 2006).

We time-locked the data to the onsets of the tri-syllabic
words and divided it into non-overlapping epochs of
10.8 sec, corresponding to the duration of 12 trisyllabic words
(36 syllables). We then quantified phase-locking to the word
(1.1 Hz) and syllable (3.3 Hz) frequencies using the ITC, which
ranges from O to 1. An ITC of 1 indicates perfect phase-locked
neural activity to a given frequency, and 0 indicates no phase-
locking at all to that frequency. The ITC was calculated after a
Fast Fourier Transform (FFT) for each epoch across frequency
bins of interest: between .6 and 5 Hz, with a bin width of .09 Hz
(following Batterink & Choi, 2021; Benjamin et al., 2021;
Moreau et al., 2022). The Word Learning Index (WLI) was
then calculated as a mean for each participant over the entire
exposure period, as well as for each epoch bundle over the
time course of exposure, for both the structured and random
conditions.

WLI= ITCword frequency

ITCsyHable frequency

To perform the time course analysis, we followed the
methodology of Moreau et al. (2022) using a sliding window to
map learning trajectories during the listening task. We
created epoch bundles each containing 5 epochs, with each
bundle shifted by one epoch (e.g., epochs 1-5, 2—6, 3—7, etc.).
This resulted in 54 sec of exposure per bundle. We computed
the ITCs and WLI for the 20 fronto-central electrodes previ-
ously used by Moreau et al. (2022).*?

2.4.1. Statistical analyses of the neural data

We statistically tested for evidence for the alternative hy-
pothesis (H1) by calculating the Bayes Factor (BF), adhering to
an inference threshold of BF;, > 6. Correspondingly, inference
of evidence for the null hypothesis (HO) is expressed as
BFio < 1/6. However, the BF is continuous, and can be inter-
preted as such. The higher the BF is, the more evidence we
have for H1, and the smaller the BF, the more evidence for HO
(see also Dienes, 2019; Schmalz et al., 2023). We calculated the
ITC for the word and syllable frequencies over the exposure
period and used them to compute the WLI, as described in 2.4
above. We then conducted our statistical analyses using R (R
Core Team, 2021) and by creating Linear Mixed Models
(LMM) with the packages tidyverse (Wickham et al., 2019),
Ime4 (Bates et al., 2015), and ImerTest (Kuznetsov et al., 2017).
The model for the neural data had the WLI (centered around
0 by subtracting the mean) as the dependent variable and we

12 3, F1, Fz, F2, F4, FC3, FC1, FCz, FC2, FC4, C3, C1, Cz, C2, C4,
CP3, CP1, CPz, CP2 & CP4.

initially included a random slope for language condition
(structured/random) per participant. We expected the WLI to
be higher in the structured than in the random condition, and
to increase as a function of exposure during the listening task
in the structured but not in the random condition, replicating
earlier findings (Batterink & Paller, 2017; Moreau et al., 2022;
Pinto et al., 2022; Van der Wulp, 2021). We statistically deter-
mined this by including condition as a predicting factor and
subsequently an interaction of condition and epoch bundle.*

We then computed two Bayes Factors — one for the main
effect of condition and one for the interaction — using Dienes
(2008) calculator method (implemented in R by Baguley &
Kaye, 2010). In the calculator, HO is modelled as a point esti-
mate (i.e., 0is the only plausible value) and H1 is modelled as a
distribution representing the probability of different magni-
tudes of the effect if H1 is true. Specifically, we used a half-
normal distribution with the mode set to 0 and the standard
deviation set to x where x is an estimation of the predicted
effect. For the effect of condition, we set x = .19, as was the
estimate of this effect in Batterink and Paller (2017; see re-
analysis in Stage 1 code supplement). For the interaction, we
set x = .01, which is the estimate of the interaction with epoch
bundle in Moreau et al. (2022, Table S3).**

For each Bayes Factor test, the Dienes calculator needs two
numbers which provide a summary of the data, specifically, a
mean and a standard error. We followed Silvey et al. (2024)
and used the B and SE of the relevant coefficients (i.e., for the
main effect of condition and the interaction) extracted from
the mixed effects model. See the simulation supplement from
Stage 1 for the models yielding these estimates on the data of
Batterink and Paller (2017). If we encountered singularity er-
rors or if the model did not converge, we first removed the
correlations between random slopes. If it still did not converge
or still was singular, we removed the random slope.

We followed the analyses with sensitivity analyses by
reporting Robustness Regions (Dienes, 2019). Robustness Re-
gions provide the range of predicted values we could have set
as x (i.e., the SD of the model of H1), while still drawing the
same qualitative conclusion with respect to our data. So, for
example, if we obtain a BF;o > 6, and thus conclude there is
robust evidence for H1, what range of values of x could we
have used and have obtained a BF at least as large as 3 (indi-
cating moderate evidence)? Or if we obtain a BF;o < 1/6, what
range of values of x we could have used and found a BF ;o =1/3
or less? When computing the range, we considered only

3 Our manual artifact rejection method yielded variations in
the N of epoch bundles per participant and condition. Moreover,
the data could be rejected at any moment in the EEG file i.e.,
epoch bundle 10 for participant A could be at a different time-
point than epoch bundle 10 for participant B. Therefore, we used
the first syllable number in the bundle (‘ur-event’) as the pre-
dictor in the models examining entrainment over time.

14 The prior for this analysis preregistered at Stage 1 was x = .07,
which was based on the block g from Batterink and Paller (2017).
However, if we hypothetically had a similar increase over time in
both datasets, the g for block would be larger because it occurs
over a longer period of time, whereas an epoch bundle represents
a much smaller increment of time. We also exploratively
repeated the analysis by dividing the data into the three exposure
blocks and running the model on the WLI per block under this
block prior (see S.1 in the Supplementary Materials).
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plausible values and therefore we looked at values between
0 and .38 and between 0 and .02 for the condition and inter-
action effects, respectively. These values are in each case
twice as large as the effects found by Batterink and Paller
(2017) and Moreau et al. (2022). In theory the WLI can range
to infinity, but we did not expect the effect to be more than
twice as large as in previous studies.

2.5. Behavioral data analyses

2.5.1. Group analyses of behavioral SL outcome measures
The dependent variable for the rating task consisted of the
familiarity ratings on the four-point scale. Random effects
were random intercepts for participant and item. We tested
whether words were judged as more familiar than part-words
and subsequently non-words by using a Cumulative Link
Mixed Model (CLMM) from the R package ordinal (Christensen,
2022) with familiarity rating as the dependent variable and
word category as predictor. Because the rating task has not
been analyzed with a CLMM before, we used the package Bain,
which stands for BAyesian INformative hypothesis evaluation (Gu
et al., 2021; Hoijtink et al., 2019). Bain computes the approxi-
mate adjusted fractional BF. According to Gu et al. (2014) and
further elaborated in Gu et al. (2018) the prior distribution of
the structural parameters can be chosen as:

h(e) _N<o, Ew> 1)

where, 0 contains the parameters that are evaluated in the
hypothesis that is presented below, 0 = (0, ..., 0)T, and 3
equals >, (see below) rescaled such that the variance of each
parameter is approaching infinite, such that the impact of this
prior distribution on the posterior is negligible as the posterior
only depends on the data. Subsequently, the posterior distri-
bution is approximated by a normal distribution:

g(0/X) :N(é, Ze> 2

Where X denotes the data, 8 denotes the estimates of struc-
tural parameters, and }, denotes their covariance matrix (Gu
et al.,, 2014, p. 516). Finally, the BF is represented for a given
hypothesis H; against an its complement Hc as the ratio of the
posterior and prior probabilities that the inequality con-
straints hold:
1—¢
1-fi
where ¢; called complexity is the proportion of the prior dis-
tribution (Equation (1)) in agreement with Hj;, and f; called fit is
the proportion of the posterior distribution (Equation (2)) in
agreement with H; (Gu et al., 2014, 2018). Note that, H. is the
complement of H;, that is, “not H;.” By taking the foils as
intercept, we formulated the following informative hypothe-
sis for Bain, which was evaluated against its complement
(Equation (3)):

BF;C :{—i X

(3)

H1. ﬁpart—word >0& 5word >0& .Bword > Bpart—word»
After the initial analysis, we also conducted a sensitivity
analysis. In Bain, this is done by increasing the size of the

fraction b of information in the data used to specify the prior
variance from 1 x b (default), to 2 x b, as well as 3 x b. If the BF
does not substantially change, we can conclude that the re-
sults are robust (Hoijtink et al., 2019, pp. 548—549).

With respect to the TDT, RTs were only taken into
consideration for any of the analyses if the button press
occurred within 1200 msec after the target onset, as has been
done in previous studies (Batterink, 2017; Batterink & Paller,
2017, 2019). All other responses are considered false alarms.
Reaction times (RTs) were analyzed using a LMM with RT as
the dependent variable and within-word syllable position
(word-initial, word-medial, and word-final) as the predicting
factor, to establish if the facilitating effect towards the word-
final syllable is present in our data. We furthermore added a
random intercept for participant to account for individual
differences in baseline RTs. Finally, we added the variable
syllable repetition as a covariate, referring to the trial number
of the target syllable in the stream (1—4)," in order to control
for an increase in RTs over the course of the stream that has
been observed previously (Batterink, 2017; Wang et al., 2023).
We used the same methodology for calculating the BF as in
2.4.1, with our model of H1 as a half-normal distribution with
a mean of 0 and an SD of 31.91, which was the result of our
pilot experiment on the TDT (see appendix B in the supple-
mentary data).

We followed this analysis with a sensitivity analysis
reporting a robustness region (Dienes, 2019). We tested for
prior models of H1 where the RT difference is 0—150 msec to
find the region where the BF, is still > 3 or < 1/3. In our pilot,
we observed an effect of 31.91 msec, thus this maximum is
large in comparison. However, a difference of 150 msec is
theoretically plausible, as the fastest RT for the third syllable
in our pilot was around 400 msec and an average button press
takes about 250 msec. Thus, 400—250 = 150 msec is the
maximum effect we could theoretically expect.

2.5.2. Correlations between neural and behavioral SL data

For the rating task, we computed a composite rating score for
each participant, following Moreau et al. (2022; Batterink &
Paller, 2019), subtracting the mean rating for foils (part-
words and non-words) from the mean rating score for words.
For the TDT, we calculated a RT facilitation score for each
participant (Batterink & Paller, 2019; Moreau et al., 2022), by
subtracting the mean RTs for the third syllable from the mean
RTs for the first syllable and dividing this by the mean RTs for
the first syllable: (RT facilitation = (RTs; — RTs3)/RTs1), which
accounts for individual baseline RTs. We conducted Bayesian
correlation analyses between the overall WLI in the structured
condition, the rating score, and the RT facilitation score to

15 At Stage 1, we conceptualized this as syllable position; 148
since there are 48 syllables in each stream. However, we only
placed cue points in the streams at target syllables, and therefore
only these appeared in the log files. There were three streams per
target (section 2.3.2.), and randomized which stream was pre-
sented when. Unfortunately, this information did not appear in
the log files. Therefore, we only know if it was the 1—4th time a
target was presented within one stream. This is conceptually
similar to our initial plan, so we included this (1—4th presenta-
tion) as the covariate instead.
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determine whether individual variability in neural entrain-
ment during exposure is related to subsequent SL perfor-
mance. We performed these correlations using the statistical
software JASP (JASP Team, 2023). The prior distribution for
correlations in JASP is described by a beta-distribution
centered around zero and with a width parameter (k) of 1 as
the default (see Fig. 4). The width is inversely related to the
parameters of the beta distribution. For instance, a prior
weight of .5 generates a beta(2,2) stretched from —-1to 1 (2=1/
.5). In this case, the beta distribution is truncated at 0, because
we only hypothesized positive correlations. Since the effects
in Batterink and Paller (2017) were r = .32 for the rating task,
and r = .42 for the TDT, we adhered to the prior k = .5, which
places less prior weight on big effect sizes and relatively more
around 0. We followed this analysis with a sensitivity anal-
ysis. In JASP, this feature is implemented, and the output
shows the results for every possible value of k (between 0 and
2). We interpret a result as robust when the BF;, does not drop
below 3 when the prior varies.

2.5.3.  Analyses of behavioral tasks for individual differences
The CA-BAT (Harrison & Miillensiefen, 2018a; 2018b) gener-
ates a score per participant according to the Item Response
Theory. Essentially corresponding to z-scores, a score of
0 corresponds to the mean of the calibration sample and a
score of 1 to the standard deviation of the calibration sample's
rhythm discrimination ability.

The PROMS (Zentner & Strauss, 2017) yields a raw score for
the rhythm subtest (between 0 and 8) and the accent sub-test
(between 0 and 10), the mean of which we recorded as one
data point per participant.

Self-reported musical experience and expertise as
measured with the Gold-MSI questionnaire (Bouwer et al.,

2016; Millensiefen et al., 2014) yields a general score be-
tween 1 and 7 for each participant and sub-scores also ranging
between 1 and 7 per sub-scale.

For the SSS task (Assaneo et al., 2019), we adhered to the
protocol described in Lizcano-Cortés et al. (2022). We calcu-
lated the PLV for each participant's whispers to the input
rhythm of 4 Hz.

With respect to the forward Digit Span test (Wechsler,
2008), we measured the longest span for each participant.
This test yields a score between 1 and 16, which was recorded
as one data point per participant.

Finally, for the PPVT-III-NL (Dunn & Dunn, 1998,
Schlichting, 2005), scores were also recorded as one data
point per participant. This score is the age-corrected WBQ
(WoordBegripsQuotiént — ‘Word Understanding Quotient’),
which is a quotient measure similar to intelligence (IQ). The
calibrated mean vocabulary score per age is 100, and scores
below 100 indicate less-than average performance, while
scores above 100 indicate above average vocabulary size for
the participant's age.

All scores on the individual differences’ tests were stan-
dardized before statistical analyses were conducted. This was
done by subtracting the mean from the variable, and subse-
quently dividing that by the standard deviation of the variable.

2.6. Analyses of individual differences in statistical
learning

For the analyses of individual differences, we first computed
correlations between all of our tests for individual differences:
the CA-BAT, PROMS, SSS task PLV, Gold-MSI, Digit Span, and
PPVT-III-NL. We performed these correlations using the
statistical software JASP (JASP Team, 2023). With regard to the
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Fig. 4 — Beta prior distributions in JASP for correlations. In JASP, one specifies the width of the prior distribution (k). The
width is inversely related to the parameters of the beta distribution. The default value of « is 1 (blue line). We used « = .5
(green line) for medium and « = .75 (orange line) for large, hypothesized correlations. When testing one-sided, the

distribution is truncated at 0.
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Mediators

Rhythmic Ability
CA-BAT, PROMS

Independent Variable

Spontaneous Synchronization of Speech

Dependent Variable

Neural Entrainment

SSS task

wLI

Fig. 5 — Mediation analysis planned at Stage 1, hypothesizing a direct effect of SSS PLV (spontaneous synchronization of
speech) on the WLI (neural measure of SL) in the structured condition, adding the CA-BAT, PROMS (both rhythmic ability), as
mediators. The c’ path denotes the direct effect, and the path ab denotes the mediated effect. This analysis was not
performed, as there was no direct effect (¢’ path, see section 3.4).

priors for these correlations, we expected the measures of
rhythm (e.g., CA-BAT, PROMS, and SSS task PLV) to be highly
positively correlated. Therefore, we used the prior k = .75,
which places relative weight on larger effect sizes. For more
information on the prior distribution in JASP, see section 2.5.2.
Exploratively, the Gold-MSI measuring general musicality was
also hypothesized to show a positive correlation with the
rhythm tasks, but we did not necessarily expect correlations
between the Digit Span, PPVT—III-NL, and rhythm tasks. For
these explorative correlations, we adhered to the prior k = .5,
which places less prior weight on big effect sizes and relatively
more around 0. This gave us a reasonable chance of finding a
theoretically interesting medium-to-large effect size (see also
appendix A in the supplementary data). We followed these
analyses with sensitivity analyses provided by JASP (see sec-
tion 2.5.2).

Subsequently, in order to assess the influence of our pre-
dictors for individual differences on SL, we planned to
perform a mediation analysis with multiple mediators (e.g.,
Dienes, 2019; Field, 2013; Zhang & Wang, 2017). The WLI in
the structured condition was the dependent variable, and we
predicted a direct effect of the SSS PLV based on earlier
research (Assaneo et al., 2019). This would indicate that in-
dividuals with a higher PLV on the SSS task show more phase-
locking to our frequencies of interest and also better SL. We
tested for this direct effect initially by performing a regression
of the SSS task on the WLIgtryctured, and subsequently loading
the model in the package Bain (Gu et al., 2021; Hoijtink et al.,
2019), under the informative hypothesis for the direct effect:
c-path > 0. The hypothesis for a null effect was defined as c-
path = 0. For an explanation of how Bain calculates the prior
and posterior distributions, and the BF, we refer the reader
back to section 2.5.1. We hypothesized that the direct effect, if
found, would be mediated by one or more of our measures of
rhythmic ability (see Fig. 5). Tasks that did not correlate with
the SSS task, would be correlated separately with the

Wlstructureq Under the prior k = .5, with sensitivity analyses as
described in section 2.5.2. Since there was no direct effect (see
section 3.4.), we did not perform the mediation analysis and
instead correlated all tasks measuring individual differences
with the WLlgiryctureq in this way.

3. Results
3.1. EEG results

We first calculated the ITC and WLI over the entire exposure
period in each condition. We then plotted the ITC for the fre-
quencies under 5 Hz (see Fig. 6). This yielded clear peaks at the
syllable frequency in both structured and random conditions,
and a peak at the word frequency in the structured condition
only. The WLI was skewed (W = .80, p < .001), so we log-
transformed the WLI before mean-centering.’® We included a
random intercept for participant, as the model did not
converge with random slopes. We found extreme evidence for
an effect of condition on the overall WLI (Bcondition structured = -17,
SE = .03, BFyq (o, .19) > 1000). We then computed the robustness
region (see section 2.4.1.), which indicated a robust effect for
the entire preregistered range RRgr - 3 [.01, .38].

The model for condition in interaction with epoch bundle
included a random slope for condition per participant. We
found evidence for HO (BF;o < 1/6, see section 2.4.1.) on the
interaction (Bcondition*epoch bundie = —5.14 x 1077, SE = 6.07 x 107°,
BF10 (o, .01) < -001, RRgp « 1/3[.001, .02]), indicating that the pro-
gression of the WLI across time did not differ by condition, in
contrast to our original hypothesis. Fig. 7 shows the WLI as a
function of exposure time per condition.

6 The WLI in Batterink and Paller (2017) was also skewed, so we
log-transformed it also when we constructed the prior at Stage 1.
See the RStudio supplement for histograms of the distributions.
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Fig. 6 — Descriptive results of the EEG analysis.

Note. A) Inter-Trial Coherence results per condition; B) Topographic distributions of the ITC per condition and frequency of
interest. Note that different scales are used for word and syllable frequencies. Both A) and B) are calculated over the entire

exposure duration.

In order to further investigate why the WLI did not progress
over time in the structured compared to the random condition,
we separately plotted the time-courses of the ITC to the word
and syllable frequencies (ITCworg and ITCgypavle; S€€ Fig. 8).
These plots indicate that the ITCy,o,q does increase towards the
end of the structured but not random condition. However,

the ITCgynavie also fluctuates over time but does not
decrease. This lack of decrease in ITCgynable, Which contrasts
with the findings of Batterink and Paller (2017), has implica-
tions for the composite WLI (section 2.4). Therefore, we

exploratively added a not-preregistered analysis where we
tested whether the interaction between condition and epoch
bundle was present for ITCy,ora. As the prior for this analysis,
we took the estimate for this interaction for ITCyeorq in the
adult group from Moreau et al. (2022, Table $3): 4.06 x 1073, We
again used the methodology for calculating the BF as eluci-
dated in 2.4.1. and calculated Robustness Regions between
0 and 8.12 x 10~ (twice as large as the prior, in line with our
other analyses). Results of this analysis again indicated evi-
dence for HO (Beondition *epoch bundle = 9.95 x 107°, SE = 3.69 x 1075,
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BF1 (o, 4.06x10-3) = -007). The Robustness Regions clarified that
the effect is smaller than the prior, yielding evidence for HO
RRgr » 3[8.3 x 107>, 9 x 1077].

Finally, we explored in a not-preregistered follow-up
analysis whether ITCy,rq increased over time in the struc-
tured condition alone. We again based the prior on Moreau
et al. (2022, p. 6 (Table 1): 2.14 x 10~3%) and calculated Robust-
ness Regions between 0 and 4.28 x 107>, Results of this anal-
ysis indeed indicated evidence for an increase of ITCyorq OVer
time in the structured condition (Bepoch bundie = 1.02 x 1073,
SE = 2.64 x 1075, BF10 (0, 2.14x10-3) = 6.96, RRgp » 3[1.00 x 107>,
2.73 x 1073%)). Taken together, we did not find evidence for
different learning trajectories for the preregistered dependent
composite variable WLI. On the other hand, we did find an
increase in the not-preregistered dependent variable ITCyora
in the structured condition alone, but this effect did not

receive substantial evidence in interaction with the random
condition.

3.2 Behavioral results

3.2.1. Behavioral SL outcome measures

The rating task revealed that our participants successfully
segmented the speech stream in the structured condition (see
Fig. 9). Results of the CLMM analysis indicated that part-words
were rated more familiar than non-words (Bpart-wora = -53,
SE = .36,95% CI[-.18, 1.25]), and words most familiar (8yera = 1.68,
SE = 43, 95% CI [.85, 2.51]). We then evaluated with bain if: Bpar
word > 0 & Buword > 0 & Bword > Bpart-word (S€Ction 2.5.1.). We found very
strong evidence for this hypothesis (BF;o = 54.63), supported by a
large Posterior Model Probability (PMP = .98). The sensitivity
analysis with Bain, performed by adjusting the fractionto 2 and 3,
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Fig. 9 — Mean familiarity ratings per word type in the rating task.
Note. Gray dots and lines represent average rating per word type per participant. Black dots and lines represent mean

ratings per word type.

indicated a robust result (BFo raction—2) = 53.56, PMP = .98; BFyo
(fraction—3) = 50.71, PMP = .98). Thus, words were indeed rated most
familiar compared to part-words and non-words.

With regard to the TDT, the average percentage of targets
detected was 82.9%. One participant detected less than 50%
(detected: 26.4%) and was therefore excluded from further
analyses on this task. The effect of syllable position on

position = —36.57, SE = 1.74, BF1 (0, 31.91) > 1000, RRgp - 3[.09, 150];
see Fig. 10). So, participants indeed detected more predictable
word-medial and -final syllables faster than initial and un-
predictable syllables of the words.

3.2.2. Brain-behavior correlations
Contrary to our hypothesis, we found moderate evidence for a

decreasing RTs received extreme evidence (Bsyiable null correlation between the rating scores computed from the
600 1
£
= -
c 4
5 500
3
3]
©
[
4
&
O 400
=
3001
First Third

Sec'ond
Syllable Position

Fig. 10 — Mean reaction times per syllable position in the target detection task.
Note. Gray dots and lines represent average RT per syllable position per participant. Black dots and lines represent mean RTs

per syllable position.
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Fig. 11 — Results for the correlation between the rating
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Fig. 12 — Results for the correlation between the RT
facilitation scores and the WLI in the structured condition.

rating task (section 2.5.2.) and the WlLIgirycturea (r = .01, 95% CI
[.00, .22], BF (.—s) = -20; Fig. 11).

With regard to the RT facilitation scores computed from
the TDT, the result of the correlation with the WLIg yctureq @lso
indicated evidence for the null hypothesis (r = .03, 95% CI [.00,
.24], BF1o («—s) = .24; Fig. 12). Since the rating score and RT
facilitation score both did not show evidence for a correlation
with the WLI, we additionally correlated them with each other
under the same prior. The rating score and RT facilitation
score did correlate highly with each other (See Fig. 13; r = .38,
95% CI [.19, .52], BF10 () = 790.89).

Several studies have used the final or maximum ITC value
per participant as a neural outcome measure of SL, rather
than the averaged entrainment response across exposure (e.
g., Choietal., 2020; Zhang et al., 2021). In addition, our findings
in section 3.1 pointed out that not the WLI, but the ITCyorqg
increased over time during the structured condition. We
therefore exploratively calculated the maximal ITCyorg

(maxITCyorg) across bundles per participant as a new (not-
preregistered) dependent variable for follow-up analyses. We
correlated the maxITCyorq With the behavioral measures of
SL. The maxITCyorq Was not normally distributed.'” Therefore,
we decided to calculate Kendall's tau-b (vb) correlation co-
efficients.'® Results revealed that the maxITCy,opq correlated
positively with both the rating score (rb = .16, 95% CI [.04, .28],
BF0 («—.5) = 7.18; Fig. 14) and RT facilitation score (vb = .19, 95%
CI [.06, .30], BF1o («—s5) = 18.54; Fig. 15), indicating that the
maximal neural entrainment to the words is correlated with
behavioral measures of SL, while the average WLI across
exposure is not.

3.3. Correlations between tasks measuring individual
differences

Given that the SSS task, CA-BAT, and PROMS were all hy-
pothesized to measure rhythmic ability, we adhered to the
preregistered prior of k = .75 when correlating these tasks,
which is suitable for larger effect sizes. For correlations be-
tween the other tasks, we adhered to the preregistered prior
k = .5 (see section 2.6). Multiple tasks measuring individual
differences were not normally distributed (PPVT, CA-BAT,
Digit Span, SSS task). Therefore, we calculated Kendall's vb
correlation coefficients as in 3.2.2. Table 1 displays the pre-
registered correlations between all tasks measuring individual
differences. With regard to rhythmic ability, we found very
strong evidence for a positive correlation between the SSS
task and the CA-BAT. We found inconclusive evidence for a
correlation between the SSS task and the PROMS. Finally, we
found extreme evidence for a correlation between the CA-BAT
and PROMS, albeit after our last sample size update (see the
sequential analysis plot in Fig. 16).

With regard to the other tasks measuring individual dif-
ferences, we found evidence for positive correlations between
the Gold-MSI and the PPVT, SSS task, CA-BAT, and PROMS.
The PPVT showed a positive correlation with the SSS task as
well. The Digit Span correlated positively with both the CA-
BAT and PROMS. Sensitivity analyses indicated that these
results were all robust to prior variations.'® The PPVT and Digit
Span showed moderate evidence for a correlation, but this
was less robust against variations of the prior (see Fig. 17).
Finally, we found evidence for no correlation (1/6 < BF;, < 1/3)
between the SSS task and the Digit Span. See also Fig. 19 for a
visual representation of these results.

3.4.  Results of analyses investigating individual
differences in statistical learning

As described in 2.6 and visualized in Fig. 5, we had planned to
do a mediation analysis. We expected a direct effect of the

7 See the JASP supplement for Shapiro—Wilk results and Q—Q
plots.

18 Kendall's tb is the non-parametric option for Bayesian cor-
relations in JASP. A conversion table of effect sizes from Pearson's
r to 7b is provided by Gilpin (1993). Small effect sizes (r = .10—.30)
correspond to a 7b of .06—.19. Medium effect sizes (r = .30—.50)
correspond to vb = .20—.33 and large effects (r > .50) correspond to
b > .34.

9 See JASP supplement: https://osf.io/c63u8.
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Fig. 13 — Results for the correlation between the RT facilitation score and the rating score.
Note. A) Scatterplot of the correlation (Pearson's r); B) Sensitivity analysis with the Bayes Factor Robustness Check, showing
the BF as a function of the possible values for prior k. Figures from JASP.
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Fig. 14 — Results for the correlation between the rating score and maxITCyord.
Note. A) Scatterplot of the correlation (Kendall's rb); B) Sensitivity analysis with the Bayes Factor Robustness Check, showing
the BF as a function of the possible values for prior k. Figures from JASP.

SSS task (PLV) on the WLIstructured, mediated by rhythmic
ability. Therefore, we first tested for this preregistered direct
effect, using a linear regression in Bain. Contrary to our
expectation, we found evidence for the absence of a rela-
tionship between the SSS task and the WLIgtrycturea (8 = -001,
SE = .03, 95% CI [~.05, .06], BF cpath — 0 (raction — 1) = 10.14,
PMP = .91; BF ¢ path>0 (fraction — 1) — 1.08, PMP = .09). Sensitivity
analyses indicated that this effect was robust (BF c.path —
0 (fraction = 2) = 7.17, PMP = .87; BF c-path>0 (fraction = 2) = 1.08,
PMP = .13; BF c-path = 0 (fraction = 3) = 5.85, PMP = .85; BF c-path>0
(fraction — 3) = 1.08, PMP = .15).

Since we found evidence against a direct effect of the SSS
task on the WlLlgiryctured, We correlated all other tasks sepa-
rately with the WLIgprycturea in JASP under the prior k = .5, as
preregistered and described in section 2.6. The results of these

correlations are displayed in Table 2. We did not find evidence
for any correlations between the WLIgiyyctureq and our tasks for
individual differences. In contrast, we found moderate evi-
dence that there was no correlation between the WLIguctured
and the CA-BAT, and robust evidence for HO regarding the
correlation between the WLIgyctureq and the PROMS. Evidence
for correlations between the WLIgucrurea @and the Gold-MSI
and Digit Span was inconclusive (BF;, around 1). Only the
correlation between the WLIgycturea @and PPVT indicated
moderate evidence for H1 (3 < BFo < 6).

As we did not find evidence for correlations between any of
our measures of individual differences and the WLIstructured,
we explored whether these tasks would be related to the
maxITCyora (cf. section 3.2.2), the rating score, and/or RT
facilitation score. Results of these not-preregistered analyses



CORTEX 192 (2025) 242—270 259

B
120 e max BF,o: 23.96 atk = .1462
o user prior: 18.54 atk = .5
o 100 — -
8 1‘ Evidence for H, Very Strong
n
i 30 - F
9_5 Strong m
S) ° 10 - = CS).
2 L Moderate @
c m =]
& : :
Anecdotal
1- L
J Evidence for Hy Anecdotal
1/3 - L
[ | I | | I I I |
0 20 40 60 80 100 120 0 5 1 15 2
Ranks of maxITCword Stretched beta prior width k

Fig. 15 — Results for the correlation between the RT facilitation score and maxITCy,orq-
Note. A) Scatterplot of the correlation (Kendall's 7b); B) Sensitivity analysis with the Bayes Factor Robustness Check, showing
the BF as a function of the possible values for prior k. Figures from JASP.

Table 1 — Results of the one-sided correlation analyses between all tasks measuring individual differences.

SSS task CA-BAT PROMS Gold-MSI PPVT
CA-BAT N = 103 -
b = .22° [.09, .34]
BF;o = 71.26
PROMS N =103 N = 105 -
b = .13 [.02, .25] 7h = .24° [.11, .36]
BF;o = 1.71 BF;0 = 204.45
Gold-MSI N = 103 N = 105 N = 105 -
b = 359 [.21, .46] 7h = .23°[.09, .34] b = .20° [.07, .32]
BF;0 > 1000 BF; = 127.37 BF; = 29.99
PPVT N =103 N = 105 N = 105 N = 105 -
b = .18" [.05, .29] b = .10 [.01, .22] b = .08 [.01, .20] b = .18" [.05, .30]
BF; = 10.79 BF;o = 1.01 BF;o = .65 BF; = 16.13
Digit span N = 103 N = 105 N = 105 N = 105 N = 105
b = .01% [.00, .15] 7b = .16" [.04, .28] 7h = .20" [.06, .31] b = .09 [.01, .21] b = .14° [.03, .26]
BFjo = .21 BF;o = 6.71 BF,, = 27.69 BF;o = .78 BF;o = 3.47

Note. Sample sizes vary due to missing data (see 2.1.2). Correlations between the SSS task, CA-BAT, and PROMS were calculated under the prior
k = .75. All other correlations were calculated under the prior k = .5. Values between brackets refer to the lower and upper limits of the 95%
Credible Interval.

2 BFy0 > 3 or BF; < 1/3.

® BF10> 6.

€ BF;0 > 100.

4 BF;0 > 1000.

can be found in Table 3. With regard to the maxITCyord, We
found moderate evidence (1/6 < BF;p < 1/3) for no correlation
with the PROMS, and close-to-moderate evidence for positive
correlations with the SSS task and Digit Span. With regard to
the rating score, we found evidence for null correlations with
the PPVT (BF1o < 1/6) and with the CA-BAT and SSS task
(BF10 < 1/3). The RT facilitation score showed robust evidence
for a positive correlation with the PROMS (see Fig. 18). Fig. 19
shows an overview of all correlations between the tasks used
in the current study.

4, Discussion

This study aimed to uncover underpinnings of individual
differences in auditory SL for word segmentation. A large
sample of 106 participants performed a speech segmentation
SL task while we measured their neural entrainment to the
frequencies of the words and syllables with EEG. SL perfor-
mance was additionally assessed through two behavioral
tasks: a familiarity rating task and target detection task (TDT).
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Fig. 17 — Results of the sensitivity analysis for the correlation between the Digit Span and the PPVT.
Note. Sensitivity analysis with the Bayes Factor Robustness Check, showing the BF as a function of the possible values for

prior k. Figure from JASP.

Participants were further presented with a control condition
consisting of randomly shuffled syllables, where word seg-
mentation based on TPs was not possible. Finally, participants
completed multiple tasks assessing musical, rhythmic, and
cognitive abilities with the aim to uncover correlations be-
tween individual differences on these tasks and individual
differences in SL.

4.1. Replication of Batterink and Paller (2017)

First, we aimed to replicate previous work on statistical
learning, viz. the study by Batterink and Paller (2017), which
showed neural entrainment evidence for TP-based word seg-
mentation, as indicated by a difference in WLI between a

structured and a random condition. On the one hand, we have
replicated this effect in our study, indicating that neural
entrainmentis a reliable measure of SL. On the other hand, we
found different results regarding the time-course of learning.
In contrast to the earlier finding by Batterink and Paller (2017),
the WLIin the current study did not show statistical evidence
for different trajectories over time between conditions, as
indicated by evidence for the null hypothesis. However, this
finding may be attributed to the absence of a decreasing
ITCsynable in our data, as our participants showed a relatively
stable ITCgynapble across time. Batterink and Paller (2017) found
both a decrease of ITCgypable and an increase of ITCyorq in the
structured condition. The WLIis a composite of these two ITC
measures (see 1.2), which increases both when ITCyora
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Table 2 — Correlation analyses between the WLIgirycturea and tasks for individual differences.

CA-BAT PROMS Gold-MSI Digit Span PPVT
WLI structured N =105 N = 105 N = 106 N =105 N = 105
b = —.01% .00, .14] b = —.01° .00, .14] b = .09 [.01, .21] b = .10 [.01, .22] b = 157 [.03, .27]
BFio = .18 BFi0 = .165 BFio = .84 BFyo = 1.03 BFo = 4.44

Note. Prior was k = .5.

Values between brackets refer to the lower and upper limits of the 95% Credible Interval.
& BF1p < 1/3 or BFy > 3.

Y BF;0 < 1/6 or BF;o > 6.

Table 3 — Correlation analyses between the maxITCy.rq4, rating score and RT facilitation score, with tasks for individual

differences.
CA-BAT PROMS Gold-MSI SSS task Digit Span PPVT
maxITCword N = 105 N = 105 N = 106 N = 103 N = 105 N = 105
b= .07 [01,.20] rb=.03%[00,.17] rb=.08[01,.20] 7b=.14[02,.26] 7b=.13[02,.25] b=.10[.01,.23]
BF;o = .52 BF;o = .29 BF = .65 BF;o = 2.78 BF = 2.29 BF;0 = 1.16
Rating score N =105 N = 105 N = 106 N =103 N = 105 N = 105
7h = .03%[.00,.17] rb=.09[01,.21] rb=.10[01,.23] b= .01%[.00,.15] 7b=.05[00,.18] b= —.02"[.00,.14]
BFy0 = .27 BF;o = .84 BF;0 = 1.20 BF;0 = .20 BFo = .38 BFy0=.16
RT facilitation score N = 104 N = 104 N = 105 N =102 N =104 N =104
b = .04 [.00,.18] rb=.16"[.04,.28] rb=.08[01, .21] 7b=.06[01,.19] 7b=.06[01,.19] b =.06[.01,.19]
BF0 = .34 BFyo = 7.11 BFi0 = .75 BFo = .43 BFio = .44 BF0 = .48

Note. Prior was k = .5.
Values between brackets refer to the lower and upper limits of the 95% Credible Interval.

2 BF1p < 1/3 or BFy > 3.
Y BF10 < 1/6 or BF;o > 6.

increases, but also when ITCgyiape decreases. When we per-
formed a not-preregistered follow-up analysis in which we
examined the time-course of learning by focusing on the
ITCwora alone as the dependent variable in the structured
condition, we did find evidence for the alternative hypothesis
that entrainment at the word level increased over time. This
result could inspire future studies to independently look at
ITCwora and ITCgypaple, Where ITCyorq is taken to be the mea-
sure of SL instead of a composite variable such as the WLI.
Separate consideration of ITCyorq and ITCgynabie has already
been adopted in several studies following Batterink and Paller
(2017)'s initial study (e.g., Batterink & Paller, 2019; Moreau
et al., 2022; Pinto et al., 2022; Zhang et al., 2021).

We furthermore replicated the behavioral results of
Batterink and Paller (2017) regarding the rating task and
TDT, with results of preregistered analyses regarding both
tasks providing evidence that our participants became sensi-
tive to the statistical regularities in the structured stream.
Performance on these tasks was also positively correlated.
Furthermore, we tested as preregistered if the WLI in the
structured condition correlated with performance on these
behavioral tasks. To our surprise, this analysis yielded evi-
dence for the null hypothesis. However, as discussed above,
the WLI may not be the most sensitive measure for SL in our
data. We therefore considered an alternative not-
preregistered dependent variable as an individual neural
index of SL: the maxITCyorg from the time-course bundle-
based analysis in the structured condition. The maxITCyord
represents the highest ITCyorq for each individual participant

across exposure and may reflect each participant's peak
sensitivity to the statistical structure. Interestingly, the
maxITCyorq did correlate positively with both behavioral
measures of SL.

Participants' sensitivity to the structure likely waxes and
wanes over time, due to the length of the exposure period
(Henry & Herrmann, 2014). An individual's peak sensitivity to
the statistical properties of the speech stream (in other words,
the moment the participant has fully recognized the TP-
structure in the input) may therefore be a more relevant indi-
cation of learning outcomes, rather than their average sensi-
tivity over time. It is possible that after this peak, participants
start focusing their attention to other properties of the input
stream, and that neural entrainment to the ITCyorq di-
minishes as a result of this diverted attention. Batterink and
Paller (2017) did not directly compare maxITCyorq With the
WLI, and it is possible that the maxITCy,rq iS @ more sensitive
individual neural marker of learning than measures that are
aggregated across exposure. Future studies may wish to
incorporate neural indices that capture peak entrainment to
words over the period of learning, such as the maxITCyora.

4.1.1.  Stimulus properties driving time-course of learning

In the current study, ITCyorq did not show an increase until
relatively late during exposure to the structured stream
(Fig. 8A), while ITCgy1aple remained relatively stable (Fig. 8B)
and did not decrease as it did in Batterink and Paller (2017). A
late increase in ITCyorg Was also previously found in a group of
adults with dyslexia in a study by Zhang et al. (2021),



262

CORTEX 192 (2025) 242—270

120 4

>

Ranks of PROMS

I I I I I I
0 20 40 60 80 100 120

Ranks of RTScore

e max BF.p: 10.15atk = .1019

ouser prior: 7114 atk = .5

30
1‘ Evidence for H. Strong
10
- Moderate rsn
7 a
L
5 g
Anecdotal §
1
\L Evidence for Hy Anecdotal
1/3
I |
0 5 1 15 2

Stretched beta prior width

Fig. 18 — Results for the correlation between the RT facilitation score and the PROMS.
Note. A) Scatterplot of the correlation (Kendall's 7b); B) Sensitivity analysis with the Bayes Factor Robustness Check, showing
the BF as a function of the possible values for prior «. Figures from JASP.

compared to typical readers showing an earlier increase in
ITCyora, followed by a decrease. This result suggests that the
overall difficulty level or learning challenge faced by an indi-
vidual learner may influence their temporal trajectory of
learning. While the current study did not include any adults
diagnosed with dyslexia (see section 2.1.2.), it differed from
previous work in terms of the stimuli. Not only did we create
entirely new stimuli, but we also made sure that these speech
streams were coarticulated to resemble natural continuous
speech more closely. Perhaps this coarticulation made it more
difficult to parse the speech stream into words than when
individually recorded syllables are concatenated, resulting in
delayed learning.

In addition, the overall typicality or familiarity of the syl-
lables themselves may also have influenced the time course of
neural entrainment at both word and syllable frequencies. In
the current study, we avoided using syllables that were
existing single-syllabic words or frequent forms in Dutch, and
therefore selected relatively infrequent syllables in the Dutch
language (see 2.2). This factor was not controlled for in the
stimuli previously employed by Batterink and Paller (2017) and
related work (e.g., Saffran, Aslin et al., 1996), and in fact, many
of the syllables used in these studies were identical to existing
English words (e.g., “go”, “to”, “row”, etc.). Previous work has
shown that statistical learning operates more efficiently
across syllables that are commonly found in a participant's
native language, compared to syllables that are rarely found
(Ordin et al., 2021). Perhaps statistical learning occurs more
slowly over less familiar syllables as first a representation for
each individual syllable must be created, followed by concat-
enation into trisyllabic items. This may have slowed down the
time course of learning, at least as measured by ITCyord,
though our participants did still learn well eventually as
indicated by statistical evidence for the overall entrainment
difference between conditions and robust performance on the
rating task and TDT. It may also provide an explanation for the

relatively stable ITCgynaple, indicating that our participants
were paying relatively constant attention to the less familiar
syllables instead of showing a decrease in ITCgynanie as a result
of habituation.

4.2. Investigating individual differences in statistical
learning
4.2.1. Relations between measures of individual differences

As illustrated in Fig. 19, we found statistical evidence for
preregistered analyses indicating multiple positive correla-
tions between performance on our measures of individual
differences (see 2.3.3. for detailed descriptions of the tasks).
Specifically, we were interested in whether the tasks aiming to
assess rhythmic ability were correlated. A preregistered
analysis indeed supplied evidence for a positive correlation
between the CA-BAT and the PROMS, but only after our final
sample size update (section 3.3; Fig. 16). This is probably due to
the different approaches these tasks take to measuring
rhythmic ability: the CA-BAT focuses on judgements of beat
alignment in which two tracks with metronome beeps over
naturalistic music are compared, whereas the PROMS relies
more on memory as it requires participants to remember a
rhythm sequence and compare it to another one. This may
also explain why the SSS task correlated positively with the
CA-BAT, but the correlation analysis regarding the SSS task
and PROMS yielded inconclusive evidence. The SSS task
measures whether participants synchronize their whispering
to the auditory input: both the SSS and CA-BAT tasks share
(perceived or produced) synchronization ability as a common
factor.

Furthermore, the Gold-MSI questionnaire gauging general
musicality including musical training experience correlated
with all three rhythm-related tasks, indicating that self-
reported musicality relates to actual performance on these
laboratory tasks. In particular, we found extreme evidence
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(BF10 > 1000) for a positive correlation between the SSS task
and the Gold-MSI. This result, together with the SSS task and
the CA-BAT correlation, indicates that the SSS task is highly
related to musicality including musical training experience,
and musical rhythmic ability.

We additionally found evidence for positive relationships
between both the CA-BAT and PROMS with the Digit Span,
assessing working memory. Both these tasks involve listening
to multiple sound excerpts and answering a question about
these afterwards. However, the PROMS likely relies more on
working memory than the CA-BAT (also indicated by the
larger effect size; see Table 1 and Fig. 19), since in principle a
correct response to an item in the CA-BAT could be based on
just one of the two musical excerpts. For example, if the
participant perceives the second music excerpts to have beats
unaligned with the rhythm of the music, the participant can
confidently indicate that the first excerpt was correct — even
when the participant had forgotten the first excerpt. The

PROMS, on the other hand, requires the participant to
compare two rhythmic sequences (i.e., state whether they
were identical or not). If the participant forgot either of the
sequences, they would not be confident about whether the
rhythms were the same. The task included graded answers
(“definitely different/the same” vs “probably different/the
same,” as well as an “I don't know” option), but maximal
points on the task are only obtained when the most extreme
answers are chosen. Finally, auditory-motor synchronization
did not seem to rely on working memory, provided by the
moderate evidence for no relation between the SSS task and
the Digit Span. This task relied on sub-conscious rhythmic
production, being the most ‘online’ task of rhythmic ability
out of these three tasks.

Finally, vocabulary size, as measured with the PPVT,
showed evidence for a correlation with both the SSS task and
the Gold-MSI (Table 1; Fig. 19). These results are in line with
findings that musicality positively influences linguistic ability
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including vocabulary size (e.g., Laddnyi et al., 2020 (review);
Zuk et al, 2022). However, the PPVT included items
regarding musical terminology, and as the SSS task and Gold-
MSI were highly correlated, musical training may have influ-
enced these results.

4.2.2.
learning
The main goal of the present study was to investigate indi-
vidual differences in SL. We hypothesized that individuals
with better musical — specifically rhythmic — abilities would
show better SL in the context of speech segmentation. We had
operationalized this relationship in our preregistration as a
direct effect of the SSS task on the WLIgtryctured, mediated by
musical rhythmic ability (Fig. 5). This hypothesis was based on
previous findings by Assaneo et al. (2019) indicating that ‘high
synchronizers’ (i.e., participants with a higher phase-locking
value (PLV) on the SSS task) performed better on a recognition-
based SL task than ‘low synchronizers’ (section 1.4.).
Furthermore, these high synchronizers showed more white
matter integrity in the dorsal language stream (Hickok &
Poeppel, 2007). We connected these findings to a hypothesis
by Francois et al., 2012, stating that the dorsal pathway could
be improved in musically trained individuals and that this in
turn would benefit SL (see section 1.5). As Assaneo et al. (2019)
argued that musical training did not explain their data more
than high/low synchronizer status, we hypothesized that in
some individuals the dorsal stream would be organized more
efficiently as part of the neurological substrate of innate
musical ability.

However, the results from the current study supported the
null hypothesis that there was no effect of SSS performance
on the WLI, contrary to our hypothesis and the results of
(2019). When we performed a not-
preregistered follow-up analysis testing for this relation with
the maxITCyorq (Table 3), the effect size was small and yielded
inconclusive evidence. In both cases, we directly regressed the
SSS PLV on a neural outcome measure of SL, hypothesizing
this to be more sensitive to finding a relationship between
these continuous variables than dividing the participants into
groups. We followed up (not-preregistered) by also correlating
the SSS PLV with our behavioral measures of SL (Table 3) and
found evidence that there was no correlation with perfor-
mance on the rating task, and inconclusive evidence in the
direction of evidence for the null regarding the TDT (BF;o = .43;
Table 3). Specifically, the rating task conceptually fails to
replicate the findings by Assaneo et al. (2019), since it is an
explicit measure of SL similar to the two-alternative forced
choice task they employed. Finally, we performed a not-
preregistered exploratory analysis in which we followed the
protocol in Lizcano-Cortés et al. (2022) to divide our partici-
pants into high and low synchronizer groups as well, which
did not alter any of these results (see Supplementary Materials
S.2.)%°. Thus, the current study provides substantial evidence
that the SSS task is related to musical and rhythmic ability
(see also 4.2.1.), but does not relate to individual differences in
linguistic SL.

No effect of SSS task performance on statistical

Assaneo et al.

20 https://osf.io/vfaq).

4.2.3. No relation between measures of rhythmic ability and
online statistical learning

We hypothesized that rhythmic ability specifically would
predict individual differences in SL. This hypothesis was
based on literature showing that precise phase-locking of
neural oscillations to auditory stimuli reflects optimal pro-
cessing (e.g., Assaneo et al., 2019; Peelle & Davis, 2012; Poeppel
& Assaneo, 2020). Furthermore, several previous studies re-
ported correlations between musicality and SL (Francois et al.,
2012; Mandikal Vasuki et al., 2017; Francois & Schon, 2011,
Shook et al, 2013). We predicted that efficient brain-
stimulus phase-locking would be supported by rhythmic
abilities relevant for both music and language processing and
would be reflected by stronger neural entrainment during SL
(section 1.5). Therefore, we hypothesized that rhythmic ability
could be a mechanism supporting SL for speech
segmentation.

In contrast to our expectation, we did not obtain evidence
for the preregistered analyses correlating performance on the
CA-BAT, PROMS, or Gold-MSI with the WLIgructurea: OUr
Bayesian analyses indicated evidence for the absence of such
effects for the CA-BAT and PROMS, and inconclusive evidence
for the Gold-MSI (see Table 2 and Fig. 19). We also found null
results in our not-preregistered follow-up analyses taking the
maxITCy,ora as the dependent variable, yielding evidence for
the null hypothesis regarding the PROMS, and inconclusive
evidence regarding the CA-BAT and Gold-MSI (Table 3). The
sole positive correlation between any of our rhythmic ability
measures and any SL measures that received evidence for the
alternative hypothesis was between the PROMS and the RT
facilitation score computed from the TDT. This is surprising,
as the PROMS showed inconclusive evidence for a correlation
with the SSS task — which was initially hypothesized to relate
to SL — and the PROMS showed evidence that it was positively
correlated with the CA-BAT only after the final sample size
update (Fig. 16). Furthermore, performance on the PROMS was
strongly associated with working memory capacity as
measured by the Digit Span (section 4.2.1.). Perhaps this
relation between the RT facilitation score and the PROMS re-
flects a commonality in accurate memory for auditory se-
quences more so than rhythmic abilities per se.

Taken together, the current results suggest that musical and
rhythmic abilities do not relate to individual differences in SL,
which contrasts with previous literature reporting correlations
between musicality and SL However, these previous studies did
not use speech stimuli, but instead assessed learning of regu-
larities from sung languages (Francois et al., 2012; Francois &
Schon, 2011), pure tones (Mandikal Vasuki et al., 2017), or
Morse codes (Shook et al., 2013). To our knowledge, no study has
explicitly made a connection between musical ability and SL of
speech. Thus, a possible explanation for our results contrasting
with these findings could be that musicality influences SL in a
highly domain-specific way, rather than universally influ-
encing all types of SL. Previous work shows that SL of speech is
highly domain-specific (Siegelman & Frost, 2015), and particu-
larly SL of speech is entrenched by prior linguistic knowledge
(Siegelman et al., 2018).

Furthermore, while we assessed rhythmic ability through
multiple tasks, they were all behavioral in nature and relied
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either on explicit judgements or sensorimotor synchroniza-
tion. We had hypothesized that rhythmic ability may be
related to SL by sharing a common neural substrate and
leading to more efficient neural processing of auditory stimuli.
Whereas we measured SL as ‘directly’ as possible with neural
entrainment, this was not the case for rhythmic ability.
Conceivably, using neural measures for both rhythmic ability
and SL could reveal positive correlations, in line with our
initial hypothesis. In fact, this possibility is supported by our
recent study in infants (van der Wulp et al., 2025). In this
study, we found that infants showing stronger neural
entrainment to the frequency of the meter in an auditorily
presented rhythm also showed stronger entrainment to the
frequency of words in a structured stream identical to the one
used in the current study. Conducting a similar study in adults
would be a promising avenue for further research.

Another explanation for our results may be that our sam-
ple of typically developed adults is sufficiently equipped to
perform SL, and thus there is not enough variation in SL per-
formance to correlate with other cognitive differences, such
as differences in rhythmic ability. As the literature points out,
individuals with language impairments in particular appear to
show impaired musical and specifically rhythmic abilities (e.
g., Boll-Avetisyan et al., 2020; Caccia & Lorusso, 2020; Fiveash
et al., 2021; Flaugnacco et al., 2014; Huss et al., 2011; Kraus
et al.,, 2014; Laddnyi et al., 2020; Sallat & Jentschke, 2015).
Further investigations wusing an individual differences
approach on more diverse samples, including participants
with language impairments, could shed more light on this
possibility.

4.2.4. Working memory

We broadened our search for individual differences in SL to
working memory capacity by including the forward Digit
Span. As earlier studies discussed in section 1.4 did not find
conclusive evidence regarding a relation between working
memory and SL, the question of whether working memory
related to SL in our sample was preregistered as exploratory.
In line with the literature, we also did not find any conclusive
evidence for or against a relationship between the Digit Span
and our measures of SL. Only the correlation between the not-
preregistered maxITCyorg and the Digit Span received anec-
dotal evidence. Moreover, the effect size was quite small
(Table 3). In sum, it seems that working memory has, atbest, a
small effect on SL. It is therefore unlikely that working
memory is a driving factor of linguistic SL in the typical
population.

4.2.5. Individual differences in SL and adult vocabulary

We administered a vocabulary test (PPVT), in order to add to
the body of research in children indicating a relationship be-
tween individual differences in SL and vocabulary size. Here,
vocabulary size is interpreted as an outcome measure of SL,
rather than a source of individual variability in SL (see Fig. 1).
Our aim was to investigate whether vocabulary and SL are also
related in adulthood, or whether this is specific to children.
This analysis was preregistered as exploratory. Our results

suggest that the role of SL in adult vocabulary appears to be
modest, as we found moderate evidence for a small correla-
tion between the PPVT and the preregistered WLI. However,
this was not the case for the (not-preregistered) maxITCyord,
where the evidence was inconclusive (Table 3). We also found
no evidence of a relationship with vocabulary size for our
behavioral measures of SL, as indicated by evidence for the
null on the rating task and inconclusive evidence on the TDT.
One possible explanation for the limited role of SL in pre-
dicting adult vocabulary attainment may be developmental
changes in the importance of SL as a mechanism for vocab-
ulary learning. It is possible that SL plays a central role in
vocabulary learning early in development, but that explicit
learning mechanisms contribute more to new vocabulary
growth by adulthood (e.g., Batterink & Neville, 2011). In addi-
tion, environmental and socio-cultural factors are associated
with adults' differential exposure to new words (e.g., educa-
tional attainment, occupation, reading preferences). This
explanation is consistent with Misyak and Christiansen
(2012), who found that vocabulary size in adulthood was
more related to print exposure than SL. Overall, our findings
suggest that adult participants’ vocabulary acquisition was
multifaceted, and not only predicted by SL ability.

5. Conclusions and theoretical implications

The current Registered Report aimed to investigate individual
differences in SL, by replicating previous work (Assaneo et al.,
2019; Batterink & Paller, 2017) and by extending it through
investigating relations between rhythmic and musical ability,
as well as working memory and vocabulary size to neural and
behavioral measures of SL. We have indeed replicated the
main effects of Batterink and Paller (2017), showing a differ-
ence between the structured and random condition in the
neural measures of SL. Neural entrainment to the regularities
in the structured condition increased over time, but only as
measured through ITCyog, rather than our preregistered
metric, the WLI. Furthermore, successful learning in our
sample was attested through our two behavioral tasks.
Interestingly, in not-preregistered follow-up analyses we
found that each individual's maximal ITCy.q robustly pre-
dicted their SL performance on both behavioral tasks. In
contrast to our preregistered expectations, we found evidence
for the absence of an effect of the SSS task (Assaneo et al,,
2019) on SL, as well as no effects of rhythmic ability on the
measurements of SL. This was indicated by either evidence for
the null hypothesis or inconclusive evidence, depending on
the task (see Tables 2 and 3). Evidence regarding working
memory remained inconclusive. Finally, we found moderate
evidence for a small correlation between vocabulary size and
the WLI. However, we found evidence for the null hypothesis
between the PPVT and one behavioral measure of SL (the
rating task), as well as inconclusive evidence on the other (the
TDT).

Overall, our results suggest that linguistic SL stands largely
independently from other individual skills and aptitudes. This
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isin line with the view put forth by Siegelman and Frost (2015),
who argued that SL is independent of general cognitive abili-
ties. Here, we extend this to other (musical, rhythmic) abilities
beyond general intelligence and working memory. Further-
more, we investigated these possible relationships using
(behavioral and neural) measures of SL beyond those that
(exclusively) rely on explicit recognition abilities. In contrast,
we assessed rhythmic ability through multiple behavioral
tasks that all relied on either explicit judgements or sensori-
motor synchronization. It may be that these behavioral mea-
surements are not ‘direct’ enough, as we in the same vein
have indications that the neural entrainment measure for SL
is more directly indexing the identification component of SL
than behavioral measures (cf. section 1.2.).

Our data indicates that there are individual differences in
SL, and that performance on different measures of SL is
correlated, but these individual differences do not appear to
strongly relate to other individual abilities in our sample. It is
possible that this general lack of correlation could be due to
our sample consisting of healthy, typically developed adults.
Populations outside of typical development have been found
to show weaker SL (e.g., Evans et al., 2009; Gabay et al., 2015;
Lammertink et al.,, 2017; Newman et al., 2016; Singh et al,,
2012; Vandermosten et al., 2019; Zhang et al., 2021), which
may lead to stronger relationships between SL and other in-
dividual abilities. We speculate that in individuals with suf-
ficient or typical SL abilities, their SL abilities may not relate
to other aspects of cognition. However, if the functioning of
the normal SL capacity breaks down or is atypical, as in
populations with diverse types of language disorders, a
relationship may emerge. For instance, rhythmic ability is
found to be impaired in populations with language impair-
ments (e.g., Ladanyi et al., 2020), so the hypothesized relation
between rhythmic abilities and SL may be present in pop-
ulations outside of typical development. Inclusion of broader,
more diverse samples in the study of individual differences
in SL represents an important direction for future work in
this field.
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