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a b s t r a c t

Statistical Learning (SL) is an essential mechanism for speech segmentation. Individual 

differences in SL ability are associated with language acquisition. For instance, better SL 

correlated with a larger vocabulary size and impaired SL was found in populations with 

language impairments. The aim of the current study was to contribute to uncovering the 

underpinnings of individual differences in auditory SL for word segmentation. We hy

pothesized that individuals with better musical — specifically rhythmic — abilities would 

show better SL. Participants (N = 106) were exposed to an artificial language consisting of 

trisyllabic nonsense words. Electroencephalography (EEG) measures of neural entrainment to 

the auditory signal allow online assessment of SL. The current study used this method to 

measure individual SL performance during exposure. To assess individual differences, we 

linked the neural measure of SL to a battery of tests measuring rhythmic, musical, and 

cognitive abilities, as well as vocabulary size. We replicated earlier work, finding both 

online (neural) and offline (behavioral) evidence of SL in our sample. In contrast to our 

expectations regarding individual differences, we found evidence for the null hypothesis 

regarding correlations between the tests of rhythmic ability and the neural measurement 

of SL. Exploratory analyses concerning working memory remained inconclusive, while 

exploratory analyses regarding vocabulary size yielded moderate evidence for a small 

correlation with the neural measure of SL. Overall, our results suggest that linguistic SL is 

largely independent from abilities in other cognitive domains, including rhythmic pro

cessing and musical abilities, as measured within a sample of healthy, typically developed 

adults.
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1. Introduction

1.1. Statistical learning for speech segmentation

Individuals acquiring a new language untutored face the 

challenge of speech segmentation1: dividing the continuous 

streams of speech sounds they hear in their environment into 

meaningful words. This is an important (first) step in 

acquiring a vocabulary and it is fundamentally linked to 

further linguistic development (Erickson & Thiessen, 2015; 

Evans et al., 2009; Newman et al., 2016; Rodrı́guez-Fornells 

et al., 2009; Siegelman, 2020; Singh et al., 2012; Zhang et al., 

2021).

Statistical learning (SL) is thought to support speech seg

mentation and refers to the process of becoming sensitive to 

the statistical structure of a stimulus stream (Saffran, Aslin 

et al., 1996; Saffran, 2003). The statistical structure useful for 

segmenting continuous speech can be quantified as transi

tional probabilities between neighboring syllables2; the proba

bility that a syllable X is directly followed by a syllable Y, given 

the overall frequency of X (Saffran, Newport et al., 1996). In 

natural language, transitional probabilities are higher for 

syllable transitions within words than for syllable transitions 

spanning word boundaries (Saffran, 2003). Transitional prob

abilities can thus serve as a statistical cue for the learner as to 

where a word boundary is likely to occur.

Research assessing SL in the laboratory has found salient 

inter-individual differences in SL performance (e.g., Batterink 

& Paller, 2017; Bogaerts et al., 2022), which have been linked to 

individual variability in language acquisition (Erickson & 
Thiessen, 2015; Siegelman, 2020; Singh et al., 2012). Howev

er, it is currently still unknown which factors underlie these 

individual differences. Therefore, the aim of the current study 

was to contribute to the knowledge in the field regarding the 

underpinnings of individual differences in auditory SL for 

word segmentation.

1.2. Assessing statistical learning in the laboratory

Using artificial language learning paradigms, multiple exper

imental studies have found that both adults and infants are 

able to use SL to segment ‘words’ (multi-syllabic sequences) 

from a continuous speech stream (e.g., Batterink & Paller, 

2017; Choi et al., 2020; François, Chobert et al., 2012; Pinto 

et al., 2022; Saffran, Aslin et al., 1996; Saffran, Newport et al., 

1996; Sch€on & François, 2011). These studies typically 

employ a familiarization phase in which participants passively 

listen to the stimulus stream made up of the concatenated 

words without any pauses or other acoustic cues to word 

boundaries. This phase is then followed by a test phase in 

which participants usually perform a two-alternative forced 

choice (2AFC) task. In this task, participants hear ‘words’ 

(previously presented patterns) and ‘foils’ (syllables presented 

in a recombined order) and are asked to identify the 

previously presented words. The rationale is that accuracy on 

the 2AFC task above chance level (50%) provides evidence that 

the participant has successfully acquired the patterns through 

SL.

However, the 2AFC task has often been criticized for tap

ping into explicit memory and meta-cognitive decision mak

ing (Bogaerts et al., 2022; François, Tillmann et al., 2012). 

Alternatively, other tasks have been proposed to probe SL 

outcomes by evaluating the expression of implicit memory. SL is 

often referred to as ‘implicit learning’ (Erickson & Thiessen, 

2015; Perruchet & Pacton, 2006) and, when measured by im

plicit memory tasks, can reveal learning in the absence of 

explicit knowledge or awareness of the regularities (Arciuli, 

2017; Batterink et al., 2015, 2019; Sch€on & François, 2011). 

One task that was designed to tap into implicit memory of 

statistical regularities in speech input is the target detection 

task (TDT; Batterink, 2017; Batterink et al., 2015; Batterink & 
Paller, 2017, 2019; Kim et al., 2009; Moreau et al., 2022; Turk- 

Browne et al., 2005). In this task, participants are presented 

with a target syllable and subsequently hear a shortened 

version of the stimuli presented during the familiarization 

phase. They are asked to press a button as quickly and accu

rately as possible when they hear the target syllable in the 

stimulus stream. If participants have learned the tri-syllabic 

words, they should show a gradual facilitation pattern 

expressed by faster reaction times (RTs) towards the word- 

final syllables, which are the most predictable compared to 

the second and first syllable.

Implicit measures such as the TDT are a step in the right 

direction for assessing SL in the laboratory. However, they are 

still administered after the familiarization phase and are thus 

also unable to access the learning process itself (e.g., Bogaerts 

et al., 2022; Sch€on & François, 2011). It has been proposed that 

SL for word segmentation is a two-step process, which starts 

with identification of the individual word forms — the process 

of segmenting the speech input — followed by long-term 

memory formation for these extracted word forms 

(Batterink & Paller, 2017; Erickson & Thiessen, 2015; 

Rodrı́guez-Fornells et al., 2009). The conventional techniques 

probe the second of these steps and therefore can only provide 

indirect evidence on the first step. A promising new avenue in 

SL research is therefore the recording of neural oscillations 

through electroencephalography (EEG) during the familiarization 

phase (Batterink & Paller, 2017, 2019; Choi et al., 2020; Moreau 

et al., 2022; Pinto et al., 2022; Zhang et al., 2021). Neural os

cillations have previously been shown to phase-lock3 to the 

rhythm of a perceived auditory stimulus such as language 

(Daikoku & Goswami, 2022; Giraud & Poeppel, 2012; Peelle & 
Davis, 2012). Batterink and Paller (2017) captured this neural 

entrainment to the speech streams by computing the Inter- 

Trial Coherence (ITC) to the frequencies corresponding to the 

presentation rate of the syllables (3.3 Hz; each syllable was 

presented every 300 msec) and the tri-syllabic words (1.1 Hz; 

900 msec). Their results showed that there was progressively 

more phase-locking during exposure at the word frequency —

as indicated by an increasing ITC over time — along with 

decreasing phase-locking at the syllable frequency in the 
1 This is also frequently referred to as word segmentation. 
2 Syllables are a basic unit of spoken language (e.g., Poeppel & 

Assaneo, 2020) and therefore transitional probability computa

tions are made based on neighboring syllables for speech 

segmentation. 

3 Also: entrain, synchronize. The phase of the neural oscillations 

aligns with the phase of the input signal. 
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structured speech stream. From these ITC values, the authors 

computed a Word Learning Index (WLI), which provides a rela

tive measure of sensitivity to the trisyllabic structure of the 

input in the structured condition: 

WLI=
ITCword frequency

ITCsyllable frequency 

Thus, the WLI increased during exposure to the structured 

stream. This was contrasted to a control condition 

comprising of a random speech stream which did not contain 

underlying regularities, and the WLI in this condition did not 

change over time. The WLI furthermore correlated signifi

cantly with individual performance on the TDT. Thus, the 

study by Batterink and Paller (2017), as well as subsequent 

experiments with the same frequency-tagging paradigm 

(Batterink & Paller, 2019; Choi et al., 2020; Moreau et al., 2022; 

Pinto et al., 2022; Zhang et al., 2021), provide evidence that 

EEG-based neural entrainment can be used to index the on

line process of word identification during SL. This measure 

provides valuable insights into the speech segmentation 

process, complementing the traditional offline learning 

outcome approaches.

1.3. Individual differences in statistical learning

Many SL studies report individual differences among partici

pants, which can be quantified as either differences in 

learning outcomes, or differences in learning speed or tra

jectories (Bogaerts et al., 2022). This indicates that SL is not a 

capacity that everyone intrinsically possesses to the same 

degree or that follows the same timeline of learning (e.g., 

Batterink & Paller, 2017; Erickson & Thiessen, 2015; François, 

Tillmann et al., 2012; Misyak & Christiansen, 2012; Misyak 

et al., 2010; Siegelman, 2020; Siegelman & Frost, 2015).

There are also indications that SL ability is associated with 

individual differences in language acquisition, particularly 

delays or disorders in language development (Evans et al., 

2009; Gabay et al., 2015; Lammertink et al., 2017; Newman 

et al., 2016; Singh et al., 2012; Vandermosten et al., 2019; 

Zhang et al., 2021). Specifically, earlier research found a rela

tionship between SL in speech segmentation experiments and 

vocabulary development in children (Evans et al., 2009; 

Newman et al., 2016; Singh et al., 2012). In these (longitudi

nal) experiments, SL performance correlated positively with 

vocabulary size. Moreover, several studies point to a SL deficit 

in individuals diagnosed with developmental language dis

order (DLD; e.g., Evans et al., 2009; Lammertink et al., 2017). On 

the other hand, the evidence for a SL deficit in developmental 

dyslexia (henceforth ‘dyslexia’) is mixed, with some studies 

finding evidence in favor of a SL deficit or delay in dyslexia 

(Gabay et al., 2015; Kerkhoff et al., 2013; Vandermosten et al., 

2019; Zhang et al., 2021) while other studies do not find a dif

ference between dyslexia and control groups for SL (Schmalz 

et al., 2017; van Witteloostuijn et al., 2019). The available evi

dence in favor of SL abilities predicting vocabulary outcomes 

as well as deficits in language disordered populations have 

yielded theories of individual differences in SL as an impor

tant predictor of language acquisition, including in the typi

cally developing population (e.g., Conway et al., 2010; Erickson 

& Thiessen, 2015; Misyak et al., 2010; Siegelman, 2020).

If SL is indeed an important predictor of language devel

opment, an open question is: what underlies individual dif

ferences in SL, which in turn might predict inter-individual 

variation in language attainment? In order to better under

stand how language learners solve the speech segmentation 

problem, and why some individuals do this with ease while 

others might struggle — which may even culminate into a 

language impairment — we need to know more about the un

derpinnings of individual differences in SL. We fundamentally 

map SL as a multifaceted construct involving multiple cogni

tive and task-related components that might predict the in

dividual differences in SL (Arciuli, 2017; Bogaerts et al., 2022; 

Siegelman, 2020; Siegelman & Frost, 2015). This is not to 

argue that an individual's SL capacity can be explained 

entirely by other cognitive factors, but we commit to the idea 

that SL can be influenced by them in a multi-faceted and 

complex manner (following Erickson and Thiessen (2015), for 

instance). This influence can lead to either facilitation or 

impairment of the SL process and thus predict inter- 

individual variability on SL tasks. We now turn to the ques

tion of which cognitive components are plausible candidates 

to influence individual differences in SL.

1.4. Cognitive abilities and statistical learning abilities

Multiple cognitive abilities have been theorized to contribute 

to individual differences in SL. One such ability is working 

memory (Arciuli, 2017; Misyak & Christiansen, 2012; Smalle 

et al., 2022). However, in contrast to theoretical proposals, 

previous empirical research has not found conclusive evi

dence that individual differences in working memory predict 

domain-general SL ability. Studies either failed to find signif

icant correlations at all (Conway et al., 2010; Siegelman & 
Frost, 2015), or found a relation only for SL of adjacent pat

terns but not for SL of non-adjacent patterns4 (Misyak & 
Christiansen, 2012). Moreover, Smalle et al. (2022) used a 

different method that not only measured individuals’ working 

memory capacity but overloaded it, and interestingly found a 

significant improvement of SL ability for implicit word seg

mentation when high cognitive demand was induced. In 

contrast, Palmer and Mattys (2016) also imposed a cognitive 

load task on their participants, and found disrupted SL.

Another individual ability that has more recently been 

associated with speech segmentation is audio-motor syn

chronization. Assaneo et al. (2019) demonstrated that SL is 

better in individuals who show enhanced synchronization to 

an auditory speech rhythm on a behavioral level compared to 

individuals who do not synchronize. They developed a new 

task called the Speech-to-Speech Synchronization (SSS) task 

(further details of the task protocol: Lizcano-Cort�es et al., 

2022), where participants are instructed to repeat a 

4 Adjacent patterns are transitional probabilities between 

neighboring items such as syllables used for word segmentation, 

thus the probability of XY given the overall frequency of X (pre

viously explained in section 1.1). Non-adjacent dependencies 

have intervening items, consisting of patterns like X[Z]Y, where X 

predicts Y over intervening Z. 
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whispered ‘tah’ while listening to an isochronous5 random

ized stream of syllables and recall if certain syllables were 

presented in the stream. Crucially, participants are not 

explicitly instructed to synchronize their whispering to the 

rhythm of the syllable stream, but it turns out that some do. 

This task revealed a bimodal distribution of individuals, 

where participants could be divided into high and low syn

chronizers. High synchronizers — i.e., those who spontane

ously adjusted their speech rhythm to the rhythm of the input 

— subsequently performed better than low synchronizers on a 

separate behavioral speech segmentation SL task. Further

more, in a subsequent passive listening phase while recording 

magnetoencephalography (MEG), high synchronizers showed 

greater neural phase-locking to an external rhythmic syllable 

stream, specifically in the left inferior and middle frontal gyri, 

relative to low synchronizers. Additionally, differences in 

neural structure were found between groups, with the high 

synchrony group showing enhancement of the arcuate 

fasciculus white matter tract connecting the auditory and 

motor cortices. Moreover, the authors also found a significant 

correlation between white matter volume in the left arcuate 

fasciculus and the brain-to-stimulus synchronization. Thus, 

relative to low synchronizers, high synchronizing individuals, 

defined as those who spontaneously synchronize their speech 

rhythm to an external speech rhythm more closely: (1) 

showed greater neural phase-locking to the rhythm of spoken 

input during passive listening, (2) showed enhanced white 

matter connectivity between auditory and motor cortices, 

which significantly correlated with brain-to-stimulus syn

chronization, and (3) performed better in a behavioral SL word 

segmentation task. The authors hypothesized that the high 

synchronizers' increased neural entrainment reflects the 

synchronization of attentive processing to syllable onsets and 

facilitates speech parsing. This would then lead to better 

extraction of the transitional probabilities between syllables, 

underlying successful word segmentation.

Finally, another body of research indicates that musical 

training positively influences both speech and music pro

cessing, as well as SL (François, Chobert et al., 2012; Mandikal 

Vasuki et al., 2017; Sch€on & François, 2011; Shook et al., 2013). 

Specifically, François et al., 2012 conducted a two-year longi

tudinal study in which they compared effects of musical 

versus painting training on SL ability in two groups of 8-year- 

old children (starting age). All children were tested on their SL 

performance segmenting a sung artificial language6 at the 

beginning of the study, after one year, and after two years. 

Before training SL ability did not differ between the groups, 

but after two years SL performance significantly improved in 

the music-training group only, and not in the painting group. 

Interestingly, in a different publication, François et al., 2012

hypothesized that musical training may improve SL through 

strengthening and/or more efficient reorganization of the 

auditory dorsal pathway. This dorsal pathway, originally 

proposed by Hickok and Poeppel (2007) as part of their dual- 

stream model of language processing, maps sensory (phono

logical) representations from the auditory cortex onto articu

latory motor representations in the motor cortex. It is 

hypothesized to be critical for spoken language acquisition; 

auditory-motor coupling is essential for learning how to speak 

(Hickok & Poeppel, 2007; Rodrı́guez-Fornells et al., 2009) and 

has been hypothesized to be a neural substrate of speech 

segmentation through SL (Rodrı́guez-Fornells et al., 2009).

1.5. Rhythmic ability and statistical learning

Importantly, the brain areas described in Assaneo et al. (2019)

where the concentration of white matter was greater and 

where more neural synchronization was found in the high 

synchronizing group (left lateralized arcuate fasciculus; left 

inferior and middle frontal gyri) correspond to the left dorsal 

pathway (Poeppel and Assaneo, 2020). This converges with the 

hypothesis by François et al., 2012 that the dorsal pathway 

might be improved in musically trained individuals and that 

this might benefit SL for speech segmentation. However, 

Assaneo et al. (2019) noted that musical experience alone did 

not explain their bimodally distributed results. As musical 

ability has been found to be heritable (Gingras et al., 2015), it 

may also be the case that the dorsal stream is organized more 

efficiently as part of the neurological substrate of innate 

musical ability. For instance, Zuk et al. (2022) found significant 

correlations between white matter pathway volumes in in

fancy and subsequent musical aptitude. Moreover, they found 

significant correlations between musical aptitude and lan

guage measures, as well as direct correlations between lan

guage skills and the white matter tracts that also correlated 

with musical aptitude. The authors found no significant cor

relations involving the arcuate fasciculus — which is part of 

the aforementioned auditory dorsal stream — but indicate that 

“this is likely due to the reduced overall number of reliable 

reconstructions in these temporal neural pathways in in

fancy, resulting in an insufficient sample size (n ≤ 17)” (p. 6). 

Taken together, white matter structures in similar areas are 

important for both language and music abilities, and already 

in infancy individual differences in volume of at least some of 

these structures can predict musical and linguistic aptitude. 

More imaging research and larger sample sizes are warranted 

to further investigate this.

A critical component of musical ability that was frequently 

linked to language outcomes is rhythm perception ability 

(Lad�anyi et al., 2020; Langus et al., 2023; Nitin et al., 2023; Zuk 

et al., 2022). Rhythmic structure such as the hierarchical or

ganization of meters,7 is a shared feature of language and 

music (e.g., Asano, 2022; Poeppel & Assaneo, 2020). Recent 

research shows that both musical rhythm and linguistic 

rhythm are processed through synchronization of neural os

cillations to hierarchically nested frequencies that are present 

in both language and music (Daikoku & Goswami, 2022; 

Fiveash et al., 2021; Giraud & Poeppel, 2012; Liberto et al., 

2020; Menn et al., 2022; Peelle & Davis, 2012; Poeppel & 
Assaneo, 2020; Tierney & Kraus, 2015). Furthermore, rhythmic 

5 Happening at regular intervals. In this case, all syllables were 

222 msec long, creating a constant syllable frequency of 4.5 Hz 

(see Assaneo et al., 2019, p. 7). 
6 All studies reported in this section did not use purely speech 

stimuli, but all used stimuli that are (combined with) tones or 

Morse codes. To our knowledge, no experiment has explicitly 

made a connection between musical ability and SL of speech. 7 Regular patterns of strong and weak beats. 
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ability — the ability to accurately detect and (behaviorally) 

synchronize to an auditory pulse — has been found to predict 

language development (Bekius et al., 2016; Lad�anyi et al., 2020; 

Langus et al., 2023; Nitin et al., 2023; Zuk et al., 2022). In 

addition, several studies indicate that atypical rhythm sensi

tivity correlates with linguistic impairments (Boll-Avetisyan 

et al., 2020; Caccia & Lorusso, 2020; Fiveash et al., 2021; 

Flaugnacco et al., 2014; Huss et al., 2011; Kraus et al., 2014; 

Lad�anyi et al., 2020; Sallat & Jentschke, 2015).

Previous literature points out that more precise phase- 

locking of neural oscillations to an auditory input is hypoth

esized to reflect optimal processing — as the syllable onsets 

align with the phase of neural oscillations (e.g., Assaneo et al., 

2019; Peelle & Davis, 2012; Poeppel & Assaneo, 2020). As earlier 

mentioned, neural entrainment can also be used to measure 

individual SL ability online (e.g., Batterink & Paller, 2017, 2019; 

Moreau et al., 2022; Pinto et al., 2022). Is an efficiency in phase- 

locking perhaps supported by rhythmic abilities relevant for 

both music and language processing, such as rhythmic motor 

synchronization and deducing metrical structures? Neurally, 

this could be indicated by a strengthened dorsal pathway 

between the auditory and motor cortices. Thus, is specifically 

rhythmic ability an underlying mechanism supporting SL, and 

are neural oscillations phase-locking to the rhythm of an 

auditory stimulus the neural mechanism indicative of SL 

during speech segmentation?

1.6. Current study

The aim of the current study is to contribute to the under

standing of the neurocognitive underpinnings of individual 

differences in auditory SL for word segmentation. We inves

tigated SL both online during familiarization by quantifying 

neural entrainment to the underlying statistical structure of 

the speech input, as well as offline in behavioral word recog

nition tasks in the test phase. Online measurement of SL was 

performed using EEG and the frequency-tagging methodology 

similar to earlier publications (e.g., Batterink & Paller, 2017, 

2019; Moreau et al., 2022; Pinto et al., 2022). The current 

study is an extension of prior work in multiple ways. In order 

to investigate individual differences, we measured partici

pants’ performance on tasks assessing musical, rhythmic, 

linguistic, and general cognitive abilities. We then related 

these scores to the neural measure of SL. To our knowledge, a 

relation between musical/rhythmic abilities and SL specif

ically for word segmentation has not previously been 

researched. Furthermore, the online EEG entrainment mea

sure of SL also has not yet been related to tasks assessing 

individual differences. See Fig. 1 and the paragraphs below for 

our predictions regarding the individual differences and SL.

We predicted that rhythmic abilities would positively 

correlate with SL performance. We tested rhythm perception 

using two tasks (Harrison & Müllensiefen, 2018a, 2018b; 

Zentner & Strauss, 2017). We predicted these tasks to be 

positively correlated, but we used multiple tasks to be sure 

that we measured rhythm perception as accurately as 

possible. We also measured behavioral rhythmic speech-to- 

speech entrainment by using the SSS task (Assaneo et al., 

2019). We expected performance on this task to also be a 

predictor of SL, which would replicate a key finding reported 

by Assaneo et al. (2019). We further investigated interrelations 

between these rhythm tasks, the SSS task, and SL ability (see 

section 2.6 for details). In addition, we exploratively added a 

questionnaire about general musical ability and musical 

training experience (Bouwer et al., 2016; Müllensiefen et al., 

2014).

Moreover, we broadened our search for individual differ

ences in SL to general cognitive abilities by adding the forward 

Digit Span (Wechsler, 2008) as an indication of working 

memory capacity. We chose to use the forward Digit Span and 

not the backward Digit Span because the forward span is 

associated with verbal working memory and depends on the 

phonological loop, which is the most relevant for our study. 

The backward Digit Span, however, is more associated with 

executive functioning and cognitive control (e.g., Ostrosky- 

Solı́s & Lozano, 2006). As earlier studies mentioned in 1.4 did 

not find conclusive evidence on a connection between work

ing memory and SL using post-learning tests, we exploratively 

investigated whether working memory aids SL online.

In addition, we administered a vocabulary test (Dunn & 
Dunn, 1998; Schlichting, 2005), adding to the earlier 

mentioned body of research with children (Evans et al., 2009; 

Newman et al., 2016; Singh et al., 2012) and extending this 

question into adulthood. Misyak and Christiansen (2012) have 

also assessed vocabulary in adults, where it correlated 

marginally with print exposure but not with SL. However, 

their vocabulary assessment differed from ours — described in 

2.3.3.d — in that it required participants to choose a synonym 

for a target word, whereas our vocabulary test required par

ticipants to choose a picture corresponding to the meaning of 

a target word. Therefore, analogous to earlier research with 

children, we predicted a positive relation between SL and 

vocabulary size.

Finally, even though this experiment aimed to answer the 

new questions above, it is also a partial replication and 

extension of earlier experiments (Assaneo et al., 2019; 

Batterink & Paller, 2017; Pinto et al., 2022). We therefore ex

pected to find comparable results to these earlier studies, 

consisting of increasing phase-locking to the word-frequency 

over the course of exposure in the structured condition, but 

not in an unstructured random condition (Batterink & Paller, 

2017; Pinto et al., 2022). We also predicted a replication of 

the behavioral results of Batterink and Paller (2017) in the 

tasks of explicit and implicit memory of the words, which 

would also be in line with our pilot results (appendix B in the 

supplementary data). Moreover, we tested if the neural mea

sure of SL correlated positively with the behavioral tasks 

(Batterink & Paller, 2017). We extend this prior work because 

the participants in the current study were speakers of Dutch, 

and the stimuli we used were newly created and adhere to 

Dutch phonotactics.8 Finally, we expected to replicate the 

finding of an SL advantage in participants with a higher syn

chronizing ability as expressed by the phase-locking value (PLV) 

of their speech in the SSS task (Assaneo et al., 2019).

8 More details on the methodology used to create these stimuli 

are described in van der Wulp et al. (2022). See also appendix B in 

the supplementary data for details on a pilot experiment with 

these stimuli. 
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2. Materials and methods

2.1. Participants

A total of 106 adults (88 F; 17 M; 1 X) participated in this study. 

Due to an unexpected termination of the test session, one 

participant only completed the Gold-MSI and the SL-part of 

the experiment and thus has missing data for the other tasks 

for individual differences. Participants were all native 

speakers of Dutch and between 18 and 35 years old (M = 23.37, 

SD = 4.22). Participants attended university (N = 101) or 

applied university (N = 5) as their highest educational level.

The experiment was approved by the Linguistics Chamber 

of the Faculty Ethics Assessment Committee of Humanities at 

Utrecht University (reference number: LK-22-174-02), and 

participants were compensated with a €20 gift card for their 

time (the session took approximately two hours).

2.1.1. Bayesian updating procedure

We started with an initial sample of 45 participants, identical 

to Batterink and Paller (2017). Then, we performed Bayesian 

Updating (Rouder, 2014), by repeating the statistical analyses 

after every added sample of 15 participants, until the 

threshold value of a Bayes Factor (BF10; Jeffreys, 1961) > 6 

or < 1/6 would be reached for our critical analyses, or when we 

would reach a maximum sample of 105 participants.9 The 

latter was the case. The critical analyses (marked green in the 

study design table in appendix A in the supplementary data) 

were the following:

• The analysis for the replication of the EEG results of 

Batterink and Paller (2017; see section 2.4.1), with regard 

to a difference in the WLI between the structured and 

random conditions. We already found a BF10 > 1000 in the 

first sample of N = 45, which stayed that large with every 

update (see RStudio supplement).

• The correlations between the tests for rhythmic ability (see 

section 2.6), in order to be able to perform the mediation 

analysis. This is the analysis that increased the sample to 

N = 105. One of these correlations did not yield a BF10 > 6 

until our final update (see section 3.3.).

• Evidence for or against a direct effect of audio-motor syn

chronization (Assaneo et al., 2019) on the WLIstructured, in 

order to be able to perform the mediation analysis (see 

section 2.6). We did not perform this analysis until our final 

sample (see section 3.4.).

2.1.2. Exclusion criteria

Participants were not invited to participate if they reported 

having a history of hearing impairments or tinnitus, AD(H)D, 

other attention or concentration issues, dyslexia, or other 

language-related impairments. Furthermore, data of partici

pants was excluded for a certain task after participation in the 

case of technical issues, which was the case for some partic

ipants (N = 3) with the SSS task, where the stimuli were 

audible in the recording and masked the participants’ whis

pers. This made the PLV calculation impossible for that task. 

Furthermore, data from one participant was excluded for the 

target detection task because they detected fewer than 50% of 

targets (26.30% detected).

2.2. Stimuli

The stimuli consisted of syllables which were combined into 

tri-syllabic nonwords (from now on referred to as ‘words’) that 

adhered to Dutch phonotactics and have been piloted for their 

learnability (see appendix B in the supplementary data for 

details on the pilot experiment). The syllable inventory con

sisted of 12 syllables, from which four words were formed for 

the structured condition:/suχita, tobamø, sytøbo, χøbyti/. In the 

structured stream, the transitional probabilities of neigh

boring syllables were 1.0 within a word and .33 between 

Fig. 1 — Predictions of the current study represented graphically.

9 Due to the one participant with missing data for the indi

vidual differences tasks except the Gold-MSI, we collected data 

from 106 instead of 105 participants. See Stage 1 for simulation- 

based estimates of statistical power: https://osf.io/2y6sx. 
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words. The word order was pseudorandomized, such that the 

same word did not repeat consecutively. More details on the 

methodology used to create these stimuli are described in van 

der Wulp et al. (2022).

We also created a corresponding random stream (Batterink 

& Paller, 2017), which forms the random condition. In the 

random condition, a different set of 12 syllables was concat

enated in a pseudorandom order, under the constraint that 

the same syllable could not consecutively repeat (as in 

Batterink & Paller, 2017). This yielded a transitional probabil

ity of .09 throughout the random condition. The syllables used 

in this condition were:/da, pø, nu, dø, χo, py, ro, dy, sa, χy, ri, 

sø/, corresponding to set B in the pilot experiment (see 

supplementary data: table C1, and see van der Wulp et al. 

(2022) for more details on the methodology used to create 

these stimuli).

The stimulus lists were converted to concatenated speech 

without pauses using MBROLA diphone synthesis (male Dutch 

voice nl2, at a monotone F0 of 100 Hz; Dutoit et al., 1996). All 

syllables were 300 msec long (100 msec consonant, 200 msec 

vowel), creating a word-length of 900 msec. Thus, this yielded 

a syllable frequency of 3.3 Hz and a word or triplet frequency 

of 1.1 Hz (see Fig. 2). We generated coarticulated speech 

streams of 13.5 min per condition in total, divided over three 

blocks of 4.5 min. Each block was made up of 900 syllables (300 

words).

We used GoldWave (GoldWave Inc., 2022) to add a linear 

fade-in and fade-out of 1.5 s at the beginning and end of each 

block, to avoid a segmentation cue at the beginning of the 

stream. Stimuli were presented with Presentation (www. 

neurobs.com). Finally, we used GoldWave to add a cue 

point10 at the onset of each syllable in the continuous audio 

files, so that they could be read as EEG markers with Presen

tation. The EEG markers and their corresponding syllables can 

be found in table C1 in appendix C in the supplementary data.

2.3. Procedure

A schematic depiction of the experimental procedure can be 

viewed in Fig. 3. Detailed descriptions of the procedure are 

given in the following sections.

2.3.1. Listening task

Participants first performed the listening task in the struc

tured condition. After this, the rating task and target detection 

task (TDT; see 2.3.2.) were administered, followed by another 

iteration of the listening task to the random stream. The 

Fig. 2 — Stimuli and stimulus frequencies in the structured 

stream. The audio represents the depicted syllables. The 

syllables of the same color form a word. The green 

waveform depicts the syllable frequency of 3.3 Hz. The blue 

waveform depicts the tri-syllabic word frequency of 1.1 Hz.

Fig. 3 — Schematic overview of the experimental procedure.10 For more information about cue points, see this manual. 

c o r t e x  1 9 2  ( 2 0 2 5 )  2 4 2 —2 7 0248 

http://www.neurobs.com
http://www.neurobs.com
https://ils-labs.wp.hum.uu.nl/wp-content/uploads/sites/428/2023/02/cue_points_documentation_ILSwebsite.pdf


listening task was divided into three blocks of 4.5 min per 

condition, yielding 13.5 min per condition and 27 min in total 

for both conditions. Participants took short self-timed breaks 

between blocks.

2.3.2. Behavioral tasks of SL outcomes

Following the structured condition of the listening task, par

ticipants performed two tasks to assess their explicit and 

implicit knowledge of the words: a familiarity rating task and 

a reaction-time based target detection task (TDT).

With respect to the rating task, participants were auditorily 

presented with a word or foil in each trial. The foils could be of 

two kinds: one being a part-word spanning a word boundary 

from the stream, or a non-word made up of syllables from the 

stream but recombined in an order that never appeared (see 

Fig. 3; see table C2 in appendix C in the supplementary data 

for the full list of foils). There were 16 trials consisting of the 

four words from the listening task, all eight possible part- 

words and four non-words. On each trial, participants rated 

on a four-point scale how familiar the word was to them 

(scale: unfamiliar — fairly unfamiliar — fairly familiar —

familiar).

The second post-learning task our participants performed 

was the TDT (Batterink, 2017; Batterink et al., 2015; Batterink & 
Paller, 2017, 2019). Participants were presented (auditorily and 

visually) with a target syllable and subsequently heard a 

shortened version of the structured condition from the 

listening task, containing 16 words (4 words each repeated 4 

times) corresponding to 48 syllables, and the same word not 

repeated in succession. They were asked to press a button as 

quickly and accurately as possible when they heard the target 

syllable. For each target syllable there were three speech 

streams, with the target occurring four times per stream, 

resulting in 36 speech streams and 144 targets for this task.

2.3.3. Additional tasks for individual differences

a. Musical and rhythmic abilities

We employed three measures assessing rhythmic and 

musical abilities of the participants. First, participants per

formed the Computerized Adaptive Beat Alignment Test 

(CA-BAT; Harrison & Müllensiefen, 2018a; 2018b), in which 

participants listened to the same piece of music twice, 

accompanied by beeps in two conditions. In one condition, the 

beeps were synchronized with the rhythm of the music, and 

in the other condition, the beeps were not synchronized with 

the rhythm of the music. Participants indicated which of the 

two tracks had the beeps in sync with the rhythm of the 

music.

Second, participants completed the Rhythm and Accent 

sub-tests of the short version of the Profile of Music Perception 

Skills (PROMS; Zentner & Strauss, 2017). In this task, partici

pants listened twice to the same rhythm and then to a third 

rhythm. Participants then indicated whether the third rhythm 

was identical or different compared to the first two.

Third, participants completed a self-report questionnaire 

of general musical abilities: the Goldsmiths Musical Sophis

tication Index (Gold-MSI; Müllensiefen et al., 2014), translated 

to Dutch (Bouwer et al., 2016). The questionnaire consisted of 

the following sub-scales: active engagement with music, 

perceptual abilities, musical training, singing abilities and 

emotional engagement. Participants filled out this question

naire during EEG set-up.

b. Spontaneous Synchronization to Speech

We administered the implicit fixed version of the Speech- 

to-Speech Synchronization (SSS) task (Assaneo et al., 2019; 

Lizcano-Cort�es et al., 2022), in which participants were 

instructed to whisper ‘tah’ while listening to an isochronous 

stream of syllables and recalling which syllables were pre

sented afterwards. We had translated the instructions to 

Dutch for our sample of Dutch native speakers.

c. Working memory

Participants performed a forward Digit Span (Wechsler, 

2008) as an indication of working memory capacity. In this 

test, the experimenter orally named digits and the participant 

was instructed to repeat them. The number of digits increased 

until the participant failed to remember two digit-series of the 

same length.

d. Vocabulary

Finally, we administered the Dutch Peabody Picture Vo

cabulary Test, third edition (PPVT—III—NL; Dunn & Dunn, 1998; 

Schlichting, 2005) to measure the vocabulary size of our par

ticipants. The PPVT—III—NL is a task where participants are 

presented with a word and four pictures. The participant then 

indicates which picture corresponds to the meaning of the 

word. The test is suitable for ages 2; 3 through 90 years and is 

norm-referenced for both the infant and adult population.

2.4. EEG recording and analyses

During the listening task, EEG was recorded at a sampling rate 

of 512 Hz using 64 Ag/AgCl-tipped electrodes attached to an 

electrode headcap using the 10/20 system. Recordings were 

made with the Active-Two system (Biosemi, Amsterdam, The 

Netherlands). Additional electrodes were placed on the left 

and right mastoid, above and below the left eye, and at the 

outer canthi of both eyes. Scalp signals were recorded relative 

to the Common Mode Sense (CMS) active electrode and then 

re-referenced during data analysis to the average of the 

mastoid electrodes. Impedance of the channels was kept 

below 20 mV. If the impedance of a channel was higher than 

this, it was labeled as a bad channel during data collection to 

be interpolated during data analysis.

The EEG data was analyzed in MATLAB (The MathWorks 

Inc., 2019) using EEGLAB (Delorme & Makeig, 2004) and the 

ERPLAB open-source toolbox (Lopez-Calderon & Luck, 2014). 

The data was bandpass filtered from .1 to 30 Hz11 and 50 Hz 

notch filtered offline. Bad channels identified upon visual 

11 Sixteen participants had slow drifts in their data. This made 

the manual artifact rejection difficult. Therefore, their data was 

filtered from .5 to 30 Hz instead. This did not influence their ITC 

results at the frequencies of interest. 
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inspection of the data or during data collection were inter

polated (mean N of interpolated channels structured = 5.18; 

random = 6.49). Data sections comprising large artifacts were 

also identified through visual inspection and manually rejec

ted using the EEGLAB plugin VisEd (Desjardins et al., 2019). A 

channel was labeled as bad during the analysis if it was 

labeled bad during data collection due to high impedance, or if 

it showed frequent noise or drifts upon visual inspection of 

the data. Eye movement artifacts were retained, as they are 

not time-locked to the stimulus onsets and have a broad 

power spectrum that does not affect the narrow-band neural 

oscillations (Srinivasan & Petrovic, 2006).

We time-locked the data to the onsets of the tri-syllabic 

words and divided it into non-overlapping epochs of 

10.8 sec, corresponding to the duration of 12 trisyllabic words 

(36 syllables). We then quantified phase-locking to the word 

(1.1 Hz) and syllable (3.3 Hz) frequencies using the ITC, which 

ranges from 0 to 1. An ITC of 1 indicates perfect phase-locked 

neural activity to a given frequency, and 0 indicates no phase- 

locking at all to that frequency. The ITC was calculated after a 

Fast Fourier Transform (FFT) for each epoch across frequency 

bins of interest: between .6 and 5 Hz, with a bin width of .09 Hz 

(following Batterink & Choi, 2021; Benjamin et al., 2021; 

Moreau et al., 2022). The Word Learning Index (WLI) was 

then calculated as a mean for each participant over the entire 

exposure period, as well as for each epoch bundle over the 

time course of exposure, for both the structured and random 

conditions. 

WLI=
ITCword frequency

ITCsyllable frequency 

To perform the time course analysis, we followed the 

methodology of Moreau et al. (2022) using a sliding window to 

map learning trajectories during the listening task. We 

created epoch bundles each containing 5 epochs, with each 

bundle shifted by one epoch (e.g., epochs 1—5, 2—6, 3—7, etc.). 

This resulted in 54 sec of exposure per bundle. We computed 

the ITCs and WLI for the 20 fronto-central electrodes previ

ously used by Moreau et al. (2022).12

2.4.1. Statistical analyses of the neural data

We statistically tested for evidence for the alternative hy

pothesis (H1) by calculating the Bayes Factor (BF), adhering to 

an inference threshold of BF10 > 6. Correspondingly, inference 

of evidence for the null hypothesis (H0) is expressed as 

BF10 < 1/6. However, the BF is continuous, and can be inter

preted as such. The higher the BF is, the more evidence we 

have for H1, and the smaller the BF, the more evidence for H0 

(see also Dienes, 2019; Schmalz et al., 2023). We calculated the 

ITC for the word and syllable frequencies over the exposure 

period and used them to compute the WLI, as described in 2.4 

above. We then conducted our statistical analyses using R (R 

Core Team, 2021) and by creating Linear Mixed Models 

(LMM) with the packages tidyverse (Wickham et al., 2019), 

lme4 (Bates et al., 2015), and lmerTest (Kuznetsov et al., 2017). 

The model for the neural data had the WLI (centered around 

0 by subtracting the mean) as the dependent variable and we 

initially included a random slope for language condition 

(structured/random) per participant. We expected the WLI to 

be higher in the structured than in the random condition, and 

to increase as a function of exposure during the listening task 

in the structured but not in the random condition, replicating 

earlier findings (Batterink & Paller, 2017; Moreau et al., 2022; 

Pinto et al., 2022; Van der Wulp, 2021). We statistically deter

mined this by including condition as a predicting factor and 

subsequently an interaction of condition and epoch bundle.13

We then computed two Bayes Factors — one for the main 

effect of condition and one for the interaction — using Dienes 

(2008) calculator method (implemented in R by Baguley & 
Kaye, 2010). In the calculator, H0 is modelled as a point esti

mate (i.e., 0 is the only plausible value) and H1 is modelled as a 

distribution representing the probability of different magni

tudes of the effect if H1 is true. Specifically, we used a half- 

normal distribution with the mode set to 0 and the standard 

deviation set to x where x is an estimation of the predicted 

effect. For the effect of condition, we set x = .19, as was the 

estimate of this effect in Batterink and Paller (2017; see re- 

analysis in Stage 1 code supplement). For the interaction, we 

set x = .01, which is the estimate of the interaction with epoch 

bundle in Moreau et al. (2022, Table S3).14

For each Bayes Factor test, the Dienes calculator needs two 

numbers which provide a summary of the data, specifically, a 

mean and a standard error. We followed Silvey et al. (2024)

and used the β and SE of the relevant coefficients (i.e., for the 

main effect of condition and the interaction) extracted from 

the mixed effects model. See the simulation supplement from 

Stage 1 for the models yielding these estimates on the data of 

Batterink and Paller (2017). If we encountered singularity er

rors or if the model did not converge, we first removed the 

correlations between random slopes. If it still did not converge 

or still was singular, we removed the random slope.

We followed the analyses with sensitivity analyses by 

reporting Robustness Regions (Dienes, 2019). Robustness Re

gions provide the range of predicted values we could have set 

as x (i.e., the SD of the model of H1), while still drawing the 

same qualitative conclusion with respect to our data. So, for 

example, if we obtain a BF10 > 6, and thus conclude there is 

robust evidence for H1, what range of values of x could we 

have used and have obtained a BF at least as large as 3 (indi

cating moderate evidence)? Or if we obtain a BF10 < 1/6, what 

range of values of x we could have used and found a BF10 = 1/3 

or less? When computing the range, we considered only 

12 F3, F1, Fz, F2, F4, FC3, FC1, FCz, FC2, FC4, C3, C1, Cz, C2, C4, 

CP3, CP1, CPz, CP2 & CP4. 

13 Our manual artifact rejection method yielded variations in 

the N of epoch bundles per participant and condition. Moreover, 

the data could be rejected at any moment in the EEG file i.e., 

epoch bundle 10 for participant A could be at a different time

point than epoch bundle 10 for participant B. Therefore, we used 

the first syllable number in the bundle (‘ur-event’) as the pre

dictor in the models examining entrainment over time. 
14 The prior for this analysis preregistered at Stage 1 was x = .07, 

which was based on the block ß from Batterink and Paller (2017). 

However, if we hypothetically had a similar increase over time in 

both datasets, the ß for block would be larger because it occurs 

over a longer period of time, whereas an epoch bundle represents 

a much smaller increment of time. We also exploratively 

repeated the analysis by dividing the data into the three exposure 

blocks and running the model on the WLI per block under this 

block prior (see S.1 in the Supplementary Materials). 
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plausible values and therefore we looked at values between 

0 and .38 and between 0 and .02 for the condition and inter

action effects, respectively. These values are in each case 

twice as large as the effects found by Batterink and Paller 

(2017) and Moreau et al. (2022). In theory the WLI can range 

to infinity, but we did not expect the effect to be more than 

twice as large as in previous studies.

2.5. Behavioral data analyses

2.5.1. Group analyses of behavioral SL outcome measures

The dependent variable for the rating task consisted of the 

familiarity ratings on the four-point scale. Random effects 

were random intercepts for participant and item. We tested 

whether words were judged as more familiar than part-words 

and subsequently non-words by using a Cumulative Link 

Mixed Model (CLMM) from the R package ordinal (Christensen, 

2022) with familiarity rating as the dependent variable and 

word category as predictor. Because the rating task has not 

been analyzed with a CLMM before, we used the package Bain, 

which stands for BAyesian INformative hypothesis evaluation (Gu 

et al., 2021; Hoijtink et al., 2019). Bain computes the approxi

mate adjusted fractional BF. According to Gu et al. (2014) and 

further elaborated in Gu et al. (2018) the prior distribution of 

the structural parameters can be chosen as: 

h(θ)=N

(

0;
∑

∞

)

(1) 

where, θ contains the parameters that are evaluated in the 

hypothesis that is presented below, 0 = (0, . . . , 0)T, and 
∑

∞ 

equals 
∑

θ (see below) rescaled such that the variance of each 

parameter is approaching infinite, such that the impact of this 

prior distribution on the posterior is negligible as the posterior 

only depends on the data. Subsequently, the posterior distri

bution is approximated by a normal distribution: 

g(θ|X)≈N

(

θ̂;
∑

θ

)

(2) 

Where X denotes the data, θ̂ denotes the estimates of struc

tural parameters, and 
∑

θ denotes their covariance matrix (Gu 

et al., 2014, p. 516). Finally, the BF is represented for a given 

hypothesis Hi against an its complement Hc as the ratio of the 

posterior and prior probabilities that the inequality con

straints hold: 

BFic =
fi

ci

×
1 − ci

1 − fi

(3) 

where ci called complexity is the proportion of the prior dis

tribution (Equation (1)) in agreement with Hi, and fi called fit is 

the proportion of the posterior distribution (Equation (2)) in 

agreement with Hi (Gu et al., 2014, 2018). Note that, Hc is the 

complement of Hi, that is, “not Hi.” By taking the foils as 

intercept, we formulated the following informative hypothe

sis for Bain, which was evaluated against its complement 

(Equation (3)):

H1. ßpart-word > 0 & ßword > 0 & ßword > ßpart-word. 

After the initial analysis, we also conducted a sensitivity 

analysis. In Bain, this is done by increasing the size of the 

fraction b of information in the data used to specify the prior 

variance from 1 × b (default), to 2 × b, as well as 3 × b. If the BF 

does not substantially change, we can conclude that the re

sults are robust (Hoijtink et al., 2019, pp. 548—549). 

With respect to the TDT, RTs were only taken into 

consideration for any of the analyses if the button press 

occurred within 1200 msec after the target onset, as has been 

done in previous studies (Batterink, 2017; Batterink & Paller, 

2017, 2019). All other responses are considered false alarms. 

Reaction times (RTs) were analyzed using a LMM with RT as 

the dependent variable and within-word syllable position 

(word-initial, word-medial, and word-final) as the predicting 

factor, to establish if the facilitating effect towards the word- 

final syllable is present in our data. We furthermore added a 

random intercept for participant to account for individual 

differences in baseline RTs. Finally, we added the variable 

syllable repetition as a covariate, referring to the trial number 

of the target syllable in the stream (1—4),15 in order to control 

for an increase in RTs over the course of the stream that has 

been observed previously (Batterink, 2017; Wang et al., 2023). 

We used the same methodology for calculating the BF as in 

2.4.1, with our model of H1 as a half-normal distribution with 

a mean of 0 and an SD of 31.91, which was the result of our 

pilot experiment on the TDT (see appendix B in the supple

mentary data). 

We followed this analysis with a sensitivity analysis 

reporting a robustness region (Dienes, 2019). We tested for 

prior models of H1 where the RT difference is 0—150 msec to 

find the region where the BF10 is still > 3 or < 1/3. In our pilot, 

we observed an effect of 31.91 msec, thus this maximum is 

large in comparison. However, a difference of 150 msec is 

theoretically plausible, as the fastest RT for the third syllable 

in our pilot was around 400 msec and an average button press 

takes about 250 msec. Thus, 400—250 = 150 msec is the 

maximum effect we could theoretically expect.

2.5.2. Correlations between neural and behavioral SL data

For the rating task, we computed a composite rating score for 

each participant, following Moreau et al. (2022; Batterink & 
Paller, 2019), subtracting the mean rating for foils (part- 

words and non-words) from the mean rating score for words. 

For the TDT, we calculated a RT facilitation score for each 

participant (Batterink & Paller, 2019; Moreau et al., 2022), by 

subtracting the mean RTs for the third syllable from the mean 

RTs for the first syllable and dividing this by the mean RTs for 

the first syllable: (RT facilitation = (RTS1 − RTS3)=RTS1), which 

accounts for individual baseline RTs. We conducted Bayesian 

correlation analyses between the overall WLI in the structured 

condition, the rating score, and the RT facilitation score to 

15 At Stage 1, we conceptualized this as syllable position; 1—48 

since there are 48 syllables in each stream. However, we only 

placed cue points in the streams at target syllables, and therefore 

only these appeared in the log files. There were three streams per 

target (section 2.3.2.), and randomized which stream was pre

sented when. Unfortunately, this information did not appear in 

the log files. Therefore, we only know if it was the 1—4th time a 

target was presented within one stream. This is conceptually 

similar to our initial plan, so we included this (1—4th presenta

tion) as the covariate instead. 
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determine whether individual variability in neural entrain

ment during exposure is related to subsequent SL perfor

mance. We performed these correlations using the statistical 

software JASP (JASP Team, 2023). The prior distribution for 

correlations in JASP is described by a beta-distribution 

centered around zero and with a width parameter (κ) of 1 as 

the default (see Fig. 4). The width is inversely related to the 

parameters of the beta distribution. For instance, a prior 

weight of .5 generates a beta(2,2) stretched from − 1 to 1 (2 = 1/ 

.5). In this case, the beta distribution is truncated at 0, because 

we only hypothesized positive correlations. Since the effects 

in Batterink and Paller (2017) were r = .32 for the rating task, 

and r = .42 for the TDT, we adhered to the prior κ = .5, which 

places less prior weight on big effect sizes and relatively more 

around 0. We followed this analysis with a sensitivity anal

ysis. In JASP, this feature is implemented, and the output 

shows the results for every possible value of κ (between 0 and 

2). We interpret a result as robust when the BF10 does not drop 

below 3 when the prior varies.

2.5.3. Analyses of behavioral tasks for individual differences

The CA-BAT (Harrison & Müllensiefen, 2018a; 2018b) gener

ates a score per participant according to the Item Response 

Theory. Essentially corresponding to z-scores, a score of 

0 corresponds to the mean of the calibration sample and a 

score of 1 to the standard deviation of the calibration sample's 

rhythm discrimination ability.

The PROMS (Zentner & Strauss, 2017) yields a raw score for 

the rhythm subtest (between 0 and 8) and the accent sub-test 

(between 0 and 10), the mean of which we recorded as one 

data point per participant.

Self-reported musical experience and expertise as 

measured with the Gold-MSI questionnaire (Bouwer et al., 

2016; Müllensiefen et al., 2014) yields a general score be

tween 1 and 7 for each participant and sub-scores also ranging 

between 1 and 7 per sub-scale.

For the SSS task (Assaneo et al., 2019), we adhered to the 

protocol described in Lizcano-Cort�es et al. (2022). We calcu

lated the PLV for each participant's whispers to the input 

rhythm of 4 Hz.

With respect to the forward Digit Span test (Wechsler, 

2008), we measured the longest span for each participant. 

This test yields a score between 1 and 16, which was recorded 

as one data point per participant.

Finally, for the PPVT—III—NL (Dunn & Dunn, 1998; 

Schlichting, 2005), scores were also recorded as one data 

point per participant. This score is the age-corrected WBQ 

(WoordBegripsQuoti€ent — ‘Word Understanding Quotient’), 

which is a quotient measure similar to intelligence (IQ). The 

calibrated mean vocabulary score per age is 100, and scores 

below 100 indicate less-than average performance, while 

scores above 100 indicate above average vocabulary size for 

the participant's age.

All scores on the individual differences’ tests were stan

dardized before statistical analyses were conducted. This was 

done by subtracting the mean from the variable, and subse

quently dividing that by the standard deviation of the variable.

2.6. Analyses of individual differences in statistical 

learning

For the analyses of individual differences, we first computed 

correlations between all of our tests for individual differences: 

the CA-BAT, PROMS, SSS task PLV, Gold-MSI, Digit Span, and 

PPVT—III—NL. We performed these correlations using the 

statistical software JASP (JASP Team, 2023). With regard to the 

Fig. 4 — Beta prior distributions in JASP for correlations. In JASP, one specifies the width of the prior distribution (κ). The 

width is inversely related to the parameters of the beta distribution. The default value of κ is 1 (blue line). We used κ ¼ .5 

(green line) for medium and κ ¼ .75 (orange line) for large, hypothesized correlations. When testing one-sided, the 

distribution is truncated at 0.
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priors for these correlations, we expected the measures of 

rhythm (e.g., CA-BAT, PROMS, and SSS task PLV) to be highly 

positively correlated. Therefore, we used the prior κ = .75, 

which places relative weight on larger effect sizes. For more 

information on the prior distribution in JASP, see section 2.5.2. 

Exploratively, the Gold-MSI measuring general musicality was 

also hypothesized to show a positive correlation with the 

rhythm tasks, but we did not necessarily expect correlations 

between the Digit Span, PPVT—III—NL, and rhythm tasks. For 

these explorative correlations, we adhered to the prior κ = .5, 

which places less prior weight on big effect sizes and relatively 

more around 0. This gave us a reasonable chance of finding a 

theoretically interesting medium-to-large effect size (see also 

appendix A in the supplementary data). We followed these 

analyses with sensitivity analyses provided by JASP (see sec

tion 2.5.2).

Subsequently, in order to assess the influence of our pre

dictors for individual differences on SL, we planned to 

perform a mediation analysis with multiple mediators (e.g., 

Dienes, 2019; Field, 2013; Zhang & Wang, 2017). The WLI in 

the structured condition was the dependent variable, and we 

predicted a direct effect of the SSS PLV based on earlier 

research (Assaneo et al., 2019). This would indicate that in

dividuals with a higher PLV on the SSS task show more phase- 

locking to our frequencies of interest and also better SL. We 

tested for this direct effect initially by performing a regression 

of the SSS task on the WLIstructured, and subsequently loading 

the model in the package Bain (Gu et al., 2021; Hoijtink et al., 

2019), under the informative hypothesis for the direct effect: 

c-path > 0. The hypothesis for a null effect was defined as c- 

path = 0. For an explanation of how Bain calculates the prior 

and posterior distributions, and the BF, we refer the reader 

back to section 2.5.1. We hypothesized that the direct effect, if 

found, would be mediated by one or more of our measures of 

rhythmic ability (see Fig. 5). Tasks that did not correlate with 

the SSS task, would be correlated separately with the 

WLIstructured under the prior κ = .5, with sensitivity analyses as 

described in section 2.5.2. Since there was no direct effect (see 

section 3.4.), we did not perform the mediation analysis and 

instead correlated all tasks measuring individual differences 

with the WLIstructured in this way.

3. Results

3.1. EEG results

We first calculated the ITC and WLI over the entire exposure 

period in each condition. We then plotted the ITC for the fre

quencies under 5 Hz (see Fig. 6). This yielded clear peaks at the 

syllable frequency in both structured and random conditions, 

and a peak at the word frequency in the structured condition 

only. The WLI was skewed (W = .80, p < .001), so we log- 

transformed the WLI before mean-centering.16 We included a 

random intercept for participant, as the model did not 

converge with random slopes. We found extreme evidence for 

an effect of condition on the overall WLI (ßcondition structured = .17, 

SE = .03, BF10 (0, .19) > 1000). We then computed the robustness 

region (see section 2.4.1.), which indicated a robust effect for 

the entire preregistered range RRBF > 3 [.01, .38].

The model for condition in interaction with epoch bundle 

included a random slope for condition per participant. We 

found evidence for H0 (BF10 < 1/6, see section 2.4.1.) on the 

interaction (ßcondition*epoch bundle = − 5.14 × 10− 7, SE = 6.07 × 10− 6, 

BF10 (0, .01) < .001, RRBF < 1/3[.001, .02]), indicating that the pro

gression of the WLI across time did not differ by condition, in 

contrast to our original hypothesis. Fig. 7 shows the WLI as a 

function of exposure time per condition.

Fig. 5 — Mediation analysis planned at Stage 1, hypothesizing a direct effect of SSS PLV (spontaneous synchronization of 

speech) on the WLI (neural measure of SL) in the structured condition, adding the CA-BAT, PROMS (both rhythmic ability), as 

mediators. The c’ path denotes the direct effect, and the path ab denotes the mediated effect. This analysis was not 

performed, as there was no direct effect (c’ path, see section 3.4).

16 The WLI in Batterink and Paller (2017) was also skewed, so we 

log-transformed it also when we constructed the prior at Stage 1. 

See the RStudio supplement for histograms of the distributions. 
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In order to further investigate why the WLI did not progress 

over time in the structured compared to the random condition, 

we separately plotted the time-courses of the ITC to the word 

and syllable frequencies (ITCword and ITCsyllable; see Fig. 8). 

These plots indicate that the ITCword does increase towards the 

end of the structured but not random condition. However,

the ITCsyllable also fluctuates over time but does not 

decrease. This lack of decrease in ITCsyllable, which contrasts 

with the findings of Batterink and Paller (2017), has implica

tions for the composite WLI (section 2.4). Therefore, we 

exploratively added a not-preregistered analysis where we 

tested whether the interaction between condition and epoch 

bundle was present for ITCword. As the prior for this analysis, 

we took the estimate for this interaction for ITCword in the 

adult group from Moreau et al. (2022, Table S3): 4.06 × 10− 3. We 

again used the methodology for calculating the BF as eluci

dated in 2.4.1. and calculated Robustness Regions between 

0 and 8.12 × 10− 3 (twice as large as the prior, in line with our 

other analyses). Results of this analysis again indicated evi

dence for H0 (ßcondition*epoch bundle = 9.95 × 10− 6, SE = 3.69 × 10− 6, 

Fig. 6 — Descriptive results of the EEG analysis. 

Note. A) Inter-Trial Coherence results per condition; B) Topographic distributions of the ITC per condition and frequency of 

interest. Note that different scales are used for word and syllable frequencies. Both A) and B) are calculated over the entire 

exposure duration.
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BF10 (0, 4.06×10̂− 3) = .007). The Robustness Regions clarified that 

the effect is smaller than the prior, yielding evidence for H0 

RRBF > 3[8.3 × 10− 5, 9 × 10− 3].

Finally, we explored in a not-preregistered follow-up 

analysis whether ITCword increased over time in the struc

tured condition alone. We again based the prior on Moreau 

et al. (2022, p. 6 (Table 1): 2.14 × 10− 3) and calculated Robust

ness Regions between 0 and 4.28 × 10− 3. Results of this anal

ysis indeed indicated evidence for an increase of ITCword over 

time in the structured condition (ßepoch bundle = 1.02 × 10− 5, 

SE = 2.64 × 10− 6, BF10 (0, 2.14×10̂− 3) = 6.96, RRBF > 3[1.00 × 10− 5, 

2.73 × 10− 3]). Taken together, we did not find evidence for 

different learning trajectories for the preregistered dependent 

composite variable WLI. On the other hand, we did find an 

increase in the not-preregistered dependent variable ITCword 

in the structured condition alone, but this effect did not 

receive substantial evidence in interaction with the random 

condition.

3.2. Behavioral results

3.2.1. Behavioral SL outcome measures

The rating task revealed that our participants successfully 

segmented the speech stream in the structured condition (see 

Fig. 9). Results of the CLMM analysis indicated that part-words 

were rated more familiar than non-words (ßpart-word = .53, 

SE = .36, 95% CI [− .18, 1.25]), and words most familiar (ßword = 1.68, 

SE = .43, 95% CI [.85, 2.51]). We then evaluated with bain if: ßpart- 

word > 0 & ßword > 0 & ßword > ßpart-word (section 2.5.1.). We found very 

strong evidence for this hypothesis (BF10 = 54.63), supported by a 

large Posterior Model Probability (PMP = .98). The sensitivity 

analysis with Bain, performed by adjusting the fraction to 2 and 3, 

Fig. 7 — WLI over time per condition.

Fig. 8 — ITCword and ITCsyllable as a function of time per condition.
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indicated a robust result (BF10 (fraction=2) = 53.56, PMP = .98; BF10 

(fraction=3) = 50.71, PMP = .98). Thus, words were indeed rated most 

familiar compared to part-words and non-words.

With regard to the TDT, the average percentage of targets 

detected was 82.9%. One participant detected less than 50% 

(detected: 26.4%) and was therefore excluded from further 

analyses on this task. The effect of syllable position on 

decreasing RTs received extreme evidence (ßsyllable 

position = − 36.57, SE = 1.74, BF10 (0, 31.91) > 1000, RRBF > 3[.09, 150]; 

see Fig. 10). So, participants indeed detected more predictable 

word-medial and -final syllables faster than initial and un

predictable syllables of the words.

3.2.2. Brain-behavior correlations

Contrary to our hypothesis, we found moderate evidence for a 

null correlation between the rating scores computed from the 

Fig. 9 — Mean familiarity ratings per word type in the rating task. 

Note. Gray dots and lines represent average rating per word type per participant. Black dots and lines represent mean 

ratings per word type.

Fig. 10 — Mean reaction times per syllable position in the target detection task. 

Note. Gray dots and lines represent average RT per syllable position per participant. Black dots and lines represent mean RTs 

per syllable position.
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rating task (section 2.5.2.) and the WLIstructured (r = .01, 95% CI 

[.00, .22], BF10 (κ=.5) = .20; Fig. 11).

With regard to the RT facilitation scores computed from 

the TDT, the result of the correlation with the WLIstructured also 

indicated evidence for the null hypothesis (r = .03, 95% CI [.00, 

.24], BF10 (κ=.5) = .24; Fig. 12). Since the rating score and RT 

facilitation score both did not show evidence for a correlation 

with the WLI, we additionally correlated them with each other 

under the same prior. The rating score and RT facilitation 

score did correlate highly with each other (See Fig. 13; r = .38, 

95% CI [.19, .52], BF10 (κ=.5) = 790.89).

Several studies have used the final or maximum ITC value 

per participant as a neural outcome measure of SL, rather 

than the averaged entrainment response across exposure (e. 

g., Choi et al., 2020; Zhang et al., 2021). In addition, our findings 

in section 3.1 pointed out that not the WLI, but the ITCword 

increased over time during the structured condition. We 

therefore exploratively calculated the maximal ITCword 

(maxITCword) across bundles per participant as a new (not- 

preregistered) dependent variable for follow-up analyses. We 

correlated the maxITCword with the behavioral measures of 

SL. The maxITCword was not normally distributed.17 Therefore, 

we decided to calculate Kendall's tau-b (τb) correlation co

efficients.18 Results revealed that the maxITCword correlated 

positively with both the rating score (τb = .16, 95% CI [.04, .28], 

BF10 (κ=.5) = 7.18; Fig. 14) and RT facilitation score (τb = .19, 95% 

CI [.06, .30], BF10 (κ=.5) = 18.54; Fig. 15), indicating that the 

maximal neural entrainment to the words is correlated with 

behavioral measures of SL, while the average WLI across 

exposure is not.

3.3. Correlations between tasks measuring individual 

differences

Given that the SSS task, CA-BAT, and PROMS were all hy

pothesized to measure rhythmic ability, we adhered to the 

preregistered prior of κ = .75 when correlating these tasks, 

which is suitable for larger effect sizes. For correlations be

tween the other tasks, we adhered to the preregistered prior 

κ = .5 (see section 2.6). Multiple tasks measuring individual 

differences were not normally distributed (PPVT, CA-BAT, 

Digit Span, SSS task). Therefore, we calculated Kendall's τb 

correlation coefficients as in 3.2.2. Table 1 displays the pre

registered correlations between all tasks measuring individual 

differences. With regard to rhythmic ability, we found very 

strong evidence for a positive correlation between the SSS 

task and the CA-BAT. We found inconclusive evidence for a 

correlation between the SSS task and the PROMS. Finally, we 

found extreme evidence for a correlation between the CA-BAT 

and PROMS, albeit after our last sample size update (see the 

sequential analysis plot in Fig. 16).

With regard to the other tasks measuring individual dif

ferences, we found evidence for positive correlations between 

the Gold-MSI and the PPVT, SSS task, CA-BAT, and PROMS. 

The PPVT showed a positive correlation with the SSS task as 

well. The Digit Span correlated positively with both the CA- 

BAT and PROMS. Sensitivity analyses indicated that these 

results were all robust to prior variations.19 The PPVT and Digit 

Span showed moderate evidence for a correlation, but this 

was less robust against variations of the prior (see Fig. 17). 

Finally, we found evidence for no correlation (1/6 < BF10 < 1/3) 

between the SSS task and the Digit Span. See also Fig. 19 for a 

visual representation of these results.

3.4. Results of analyses investigating individual 

differences in statistical learning

As described in 2.6 and visualized in Fig. 5, we had planned to 

do a mediation analysis. We expected a direct effect of the 

Fig. 11 — Results for the correlation between the rating 

score and the WLI in the structured condition.

Fig. 12 — Results for the correlation between the RT 

facilitation scores and the WLI in the structured condition.

17 See the JASP supplement for Shapiro—Wilk results and Q—Q 

plots. 
18 Kendall's τb is the non-parametric option for Bayesian cor

relations in JASP. A conversion table of effect sizes from Pearson's 

r to τb is provided by Gilpin (1993). Small effect sizes (r = .10—.30) 

correspond to a τb of .06—.19. Medium effect sizes (r = .30—.50) 

correspond to τb = .20—.33 and large effects (r ≥ .50) correspond to 

τb ≥ .34. 
19 See JASP supplement: https://osf.io/c63u8. 
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SSS task (PLV) on the WLIstructured, mediated by rhythmic 

ability. Therefore, we first tested for this preregistered direct 

effect, using a linear regression in Bain. Contrary to our 

expectation, we found evidence for the absence of a rela

tionship between the SSS task and the WLIstructured (ß = .001, 

SE = .03, 95% CI [− .05, .06], BF c-path = 0 (fraction = 1) = 10.14, 

PMP = .91; BF c-path>0 (fraction = 1) = 1.08, PMP = .09). Sensitivity 

analyses indicated that this effect was robust (BF c-path =

0 (fraction = 2) = 7.17, PMP = .87; BF c-path>0 (fraction = 2) = 1.08, 

PMP = .13; BF c-path = 0 (fraction = 3) = 5.85, PMP = .85; BF c-path>0 

(fraction = 3) = 1.08, PMP = .15).

Since we found evidence against a direct effect of the SSS 

task on the WLIstructured, we correlated all other tasks sepa

rately with the WLIstructured in JASP under the prior κ = .5, as 

preregistered and described in section 2.6. The results of these 

correlations are displayed in Table 2. We did not find evidence 

for any correlations between the WLIstructured and our tasks for 

individual differences. In contrast, we found moderate evi

dence that there was no correlation between the WLIstructured 

and the CA-BAT, and robust evidence for H0 regarding the 

correlation between the WLIstructured and the PROMS. Evidence 

for correlations between the WLIstructured and the Gold-MSI 

and Digit Span was inconclusive (BF10 around 1). Only the 

correlation between the WLIstructured and PPVT indicated 

moderate evidence for H1 (3 < BF10 < 6).

As we did not find evidence for correlations between any of 

our measures of individual differences and the WLIstructured, 

we explored whether these tasks would be related to the 

maxITCword (cf. section 3.2.2.), the rating score, and/or RT 

facilitation score. Results of these not-preregistered analyses 

Fig. 14 — Results for the correlation between the rating score and maxITCword. 

Note. A) Scatterplot of the correlation (Kendall's τb); B) Sensitivity analysis with the Bayes Factor Robustness Check, showing 

the BF as a function of the possible values for prior κ. Figures from JASP.

Fig. 13 — Results for the correlation between the RT facilitation score and the rating score. 

Note. A) Scatterplot of the correlation (Pearson's r); B) Sensitivity analysis with the Bayes Factor Robustness Check, showing 

the BF as a function of the possible values for prior κ. Figures from JASP.
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can be found in Table 3. With regard to the maxITCword, we 

found moderate evidence (1/6 < BF10 < 1/3) for no correlation 

with the PROMS, and close-to-moderate evidence for positive 

correlations with the SSS task and Digit Span. With regard to 

the rating score, we found evidence for null correlations with 

the PPVT (BF10 < 1/6) and with the CA-BAT and SSS task 

(BF10 < 1/3). The RT facilitation score showed robust evidence 

for a positive correlation with the PROMS (see Fig. 18). Fig. 19

shows an overview of all correlations between the tasks used 

in the current study.

4. Discussion

This study aimed to uncover underpinnings of individual 

differences in auditory SL for word segmentation. A large 

sample of 106 participants performed a speech segmentation 

SL task while we measured their neural entrainment to the 

frequencies of the words and syllables with EEG. SL perfor

mance was additionally assessed through two behavioral 

tasks: a familiarity rating task and target detection task (TDT). 

Fig. 15 — Results for the correlation between the RT facilitation score and maxITCword. 

Note. A) Scatterplot of the correlation (Kendall's τb); B) Sensitivity analysis with the Bayes Factor Robustness Check, showing 

the BF as a function of the possible values for prior κ. Figures from JASP.

Table 1 — Results of the one-sided correlation analyses between all tasks measuring individual differences.

SSS task CA-BAT PROMS Gold-MSI PPVT

CA-BAT N = 103 —

τb = .22b [.09, .34]

BF10 = 71.26

PROMS N = 103 N = 105 —

τb = .13 [.02, .25] τb = .24c [.11, .36]

BF10 = 1.71 BF10 = 204.45

Gold-MSI N = 103 N = 105 N = 105 —

τb = .35d [.21, .46] τb = .23c [.09, .34] τb = .20b [.07, .32]

BF10 > 1000 BF10 = 127.37 BF10 = 29.99

PPVT N = 103 N = 105 N = 105 N = 105 —

τb = .18b [.05, .29] τb = .10 [.01, .22] τb = .08 [.01, .20] τb = .18b [.05, .30]

BF10 = 10.79 BF10 = 1.01 BF10 = .65 BF10 = 16.13

Digit span N = 103 N = 105 N = 105 N = 105 N = 105

τb = .01a [.00, .15] τb = .16b [.04, .28] τb = .20b [.06, .31] τb = .09 [.01, .21] τb = .14a [.03, .26]

BF10 = .21 BF10 = 6.71 BF10 = 27.69 BF10 = .78 BF10 = 3.47

Note. Sample sizes vary due to missing data (see 2.1.2). Correlations between the SSS task, CA-BAT, and PROMS were calculated under the prior 

κ = .75. All other correlations were calculated under the prior κ = .5. Values between brackets refer to the lower and upper limits of the 95% 

Credible Interval.
a BF10 > 3 or BF10 < 1/3.
b BF10 > 6.
c BF10 > 100.
d BF10 > 1000.
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Participants were further presented with a control condition 

consisting of randomly shuffled syllables, where word seg

mentation based on TPs was not possible. Finally, participants 

completed multiple tasks assessing musical, rhythmic, and 

cognitive abilities with the aim to uncover correlations be

tween individual differences on these tasks and individual 

differences in SL.

4.1. Replication of Batterink and Paller (2017)

First, we aimed to replicate previous work on statistical 

learning, viz. the study by Batterink and Paller (2017), which 

showed neural entrainment evidence for TP-based word seg

mentation, as indicated by a difference in WLI between a 

structured and a random condition. On the one hand, we have 

replicated this effect in our study, indicating that neural 

entrainment is a reliable measure of SL. On the other hand, we 

found different results regarding the time-course of learning. 

In contrast to the earlier finding by Batterink and Paller (2017), 

the WLI in the current study did not show statistical evidence 

for different trajectories over time between conditions, as 

indicated by evidence for the null hypothesis. However, this 

finding may be attributed to the absence of a decreasing 

ITCsyllable in our data, as our participants showed a relatively 

stable ITCsyllable across time. Batterink and Paller (2017) found 

both a decrease of ITCsyllable and an increase of ITCword in the 

structured condition. The WLI is a composite of these two ITC 

measures (see 1.2), which increases both when ITCword 

Fig. 16 — Sequential analysis plot for the correlation between the CA-BAT and PROMS under κ ¼ .75. 

Note. This figure shows that the BF10 was only larger than 6 in our last sample size update (updating with 15 participants 

from N ¼ 90 to N ¼ 105).

Fig. 17 — Results of the sensitivity analysis for the correlation between the Digit Span and the PPVT. 

Note. Sensitivity analysis with the Bayes Factor Robustness Check, showing the BF as a function of the possible values for 

prior κ. Figure from JASP.
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increases, but also when ITCsyllable decreases. When we per

formed a not-preregistered follow-up analysis in which we 

examined the time-course of learning by focusing on the 

ITCword alone as the dependent variable in the structured 

condition, we did find evidence for the alternative hypothesis 

that entrainment at the word level increased over time. This 

result could inspire future studies to independently look at 

ITCword and ITCsyllable, where ITCword is taken to be the mea

sure of SL instead of a composite variable such as the WLI. 

Separate consideration of ITCword and ITCsyllable has already 

been adopted in several studies following Batterink and Paller 

(2017)'s initial study (e.g., Batterink & Paller, 2019; Moreau 

et al., 2022; Pinto et al., 2022; Zhang et al., 2021).

We furthermore replicated the behavioral results of 

Batterink and Paller (2017) regarding the rating task and 

TDT, with results of preregistered analyses regarding both 

tasks providing evidence that our participants became sensi

tive to the statistical regularities in the structured stream. 

Performance on these tasks was also positively correlated. 

Furthermore, we tested as preregistered if the WLI in the 

structured condition correlated with performance on these 

behavioral tasks. To our surprise, this analysis yielded evi

dence for the null hypothesis. However, as discussed above, 

the WLI may not be the most sensitive measure for SL in our 

data. We therefore considered an alternative not- 

preregistered dependent variable as an individual neural 

index of SL: the maxITCword from the time-course bundle- 

based analysis in the structured condition. The maxITCword 

represents the highest ITCword for each individual participant 

across exposure and may reflect each participant's peak 

sensitivity to the statistical structure. Interestingly, the 

maxITCword did correlate positively with both behavioral 

measures of SL.

Participants' sensitivity to the structure likely waxes and 

wanes over time, due to the length of the exposure period 

(Henry & Herrmann, 2014). An individual's peak sensitivity to 

the statistical properties of the speech stream (in other words, 

the moment the participant has fully recognized the TP- 

structure in the input) may therefore be a more relevant indi

cation of learning outcomes, rather than their average sensi

tivity over time. It is possible that after this peak, participants 

start focusing their attention to other properties of the input 

stream, and that neural entrainment to the ITCword di

minishes as a result of this diverted attention. Batterink and 

Paller (2017) did not directly compare maxITCword with the 

WLI, and it is possible that the maxITCword is a more sensitive 

individual neural marker of learning than measures that are 

aggregated across exposure. Future studies may wish to 

incorporate neural indices that capture peak entrainment to 

words over the period of learning, such as the maxITCword.

4.1.1. Stimulus properties driving time-course of learning

In the current study, ITCword did not show an increase until 

relatively late during exposure to the structured stream 

(Fig. 8A), while ITCsyllable remained relatively stable (Fig. 8B) 

and did not decrease as it did in Batterink and Paller (2017). A 

late increase in ITCword was also previously found in a group of 

adults with dyslexia in a study by Zhang et al. (2021), 

Table 2 — Correlation analyses between the WLIstructured and tasks for individual differences.

CA-BAT PROMS Gold-MSI Digit Span PPVT

WLI structured N = 105 N = 105 N = 106 N = 105 N = 105

τb = − .01a [.00, .14] τb = − .01b [.00, .14] τb = .09 [.01, .21] τb = .10 [.01, .22] τb = .15a [.03, .27]

BF10 = .18 BF10 = .165 BF10 = .84 BF10 = 1.03 BF10 = 4.44

Note. Prior was κ = .5. 

Values between brackets refer to the lower and upper limits of the 95% Credible Interval.
a BF10 < 1/3 or BF10 > 3.
b BF10 < 1/6 or BF10 > 6.

Table 3 — Correlation analyses between the maxITCword, rating score and RT facilitation score, with tasks for individual 

differences.

CA-BAT PROMS Gold-MSI SSS task Digit Span PPVT

maxITCword N = 105 N = 105 N = 106 N = 103 N = 105 N = 105

τb = .07 [.01, .20] τb = .03a [.00, .17] τb = .08 [.01, .20] τb = .14 [.02, .26] τb = .13 [.02, .25] τb = .10 [.01, .23]

BF10 = .52 BF10 = .29 BF10 = .65 BF10 = 2.78 BF10 = 2.29 BF10 = 1.16

Rating score N = 105 N = 105 N = 106 N = 103 N = 105 N = 105

τb = .03a [.00, .17] τb = .09 [.01, .21] τb = .10 [.01, .23] τb = .01a [.00, .15] τb = .05 [.00, .18] τb = − .02b [.00, .14]

BF10 = .27 BF10 = .84 BF10 = 1.20 BF10 = .20 BF10 = .38 BF10 = .16

RT facilitation score N = 104 N = 104 N = 105 N = 102 N = 104 N = 104

τb = .04 [.00, .18] τb = .16b [.04, .28] τb = .08 [.01, .21] τb = .06 [.01, .19] τb = .06 [.01, .19] τb = .06 [.01, .19]

BF10 = .34 BF10 = 7.11 BF10 = .75 BF10 = .43 BF10 = .44 BF10 = .48

Note. Prior was κ = .5. 

Values between brackets refer to the lower and upper limits of the 95% Credible Interval.
a BF10 < 1/3 or BF10 > 3.
b BF10 < 1/6 or BF10 > 6.

c o r t e x  1 9 2  ( 2 0 2 5 )  2 4 2 —2 7 0 261 



compared to typical readers showing an earlier increase in 

ITCword, followed by a decrease. This result suggests that the 

overall difficulty level or learning challenge faced by an indi

vidual learner may influence their temporal trajectory of 

learning. While the current study did not include any adults 

diagnosed with dyslexia (see section 2.1.2.), it differed from 

previous work in terms of the stimuli. Not only did we create 

entirely new stimuli, but we also made sure that these speech 

streams were coarticulated to resemble natural continuous 

speech more closely. Perhaps this coarticulation made it more 

difficult to parse the speech stream into words than when 

individually recorded syllables are concatenated, resulting in 

delayed learning.

In addition, the overall typicality or familiarity of the syl

lables themselves may also have influenced the time course of 

neural entrainment at both word and syllable frequencies. In 

the current study, we avoided using syllables that were 

existing single-syllabic words or frequent forms in Dutch, and 

therefore selected relatively infrequent syllables in the Dutch 

language (see 2.2). This factor was not controlled for in the 

stimuli previously employed by Batterink and Paller (2017) and 

related work (e.g., Saffran, Aslin et al., 1996), and in fact, many 

of the syllables used in these studies were identical to existing 

English words (e.g., “go”, “to”, “row”, etc.). Previous work has 

shown that statistical learning operates more efficiently 

across syllables that are commonly found in a participant's 

native language, compared to syllables that are rarely found 

(Ordin et al., 2021). Perhaps statistical learning occurs more 

slowly over less familiar syllables as first a representation for 

each individual syllable must be created, followed by concat

enation into trisyllabic items. This may have slowed down the 

time course of learning, at least as measured by ITCword, 

though our participants did still learn well eventually as 

indicated by statistical evidence for the overall entrainment 

difference between conditions and robust performance on the 

rating task and TDT. It may also provide an explanation for the 

relatively stable ITCsyllable, indicating that our participants 

were paying relatively constant attention to the less familiar 

syllables instead of showing a decrease in ITCsyllable as a result 

of habituation.

4.2. Investigating individual differences in statistical 

learning

4.2.1. Relations between measures of individual differences

As illustrated in Fig. 19, we found statistical evidence for 

preregistered analyses indicating multiple positive correla

tions between performance on our measures of individual 

differences (see 2.3.3. for detailed descriptions of the tasks). 

Specifically, we were interested in whether the tasks aiming to 

assess rhythmic ability were correlated. A preregistered 

analysis indeed supplied evidence for a positive correlation 

between the CA-BAT and the PROMS, but only after our final 

sample size update (section 3.3; Fig. 16). This is probably due to 

the different approaches these tasks take to measuring 

rhythmic ability: the CA-BAT focuses on judgements of beat 

alignment in which two tracks with metronome beeps over 

naturalistic music are compared, whereas the PROMS relies 

more on memory as it requires participants to remember a 

rhythm sequence and compare it to another one. This may 

also explain why the SSS task correlated positively with the 

CA-BAT, but the correlation analysis regarding the SSS task 

and PROMS yielded inconclusive evidence. The SSS task 

measures whether participants synchronize their whispering 

to the auditory input: both the SSS and CA-BAT tasks share 

(perceived or produced) synchronization ability as a common 

factor.

Furthermore, the Gold-MSI questionnaire gauging general 

musicality including musical training experience correlated 

with all three rhythm-related tasks, indicating that self- 

reported musicality relates to actual performance on these 

laboratory tasks. In particular, we found extreme evidence 

Fig. 18 — Results for the correlation between the RT facilitation score and the PROMS. 

Note. A) Scatterplot of the correlation (Kendall's τb); B) Sensitivity analysis with the Bayes Factor Robustness Check, showing 

the BF as a function of the possible values for prior κ. Figures from JASP.
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(BF10 > 1000) for a positive correlation between the SSS task 

and the Gold-MSI. This result, together with the SSS task and 

the CA-BAT correlation, indicates that the SSS task is highly 

related to musicality including musical training experience, 

and musical rhythmic ability.

We additionally found evidence for positive relationships 

between both the CA-BAT and PROMS with the Digit Span, 

assessing working memory. Both these tasks involve listening 

to multiple sound excerpts and answering a question about 

these afterwards. However, the PROMS likely relies more on 

working memory than the CA-BAT (also indicated by the 

larger effect size; see Table 1 and Fig. 19), since in principle a 

correct response to an item in the CA-BAT could be based on 

just one of the two musical excerpts. For example, if the 

participant perceives the second music excerpts to have beats 

unaligned with the rhythm of the music, the participant can 

confidently indicate that the first excerpt was correct — even 

when the participant had forgotten the first excerpt. The 

PROMS, on the other hand, requires the participant to 

compare two rhythmic sequences (i.e., state whether they 

were identical or not). If the participant forgot either of the 

sequences, they would not be confident about whether the 

rhythms were the same. The task included graded answers 

(“definitely different/the same” vs “probably different/the 

same,” as well as an “I don't know” option), but maximal 

points on the task are only obtained when the most extreme 

answers are chosen. Finally, auditory-motor synchronization 

did not seem to rely on working memory, provided by the 

moderate evidence for no relation between the SSS task and 

the Digit Span. This task relied on sub-conscious rhythmic 

production, being the most ‘online’ task of rhythmic ability 

out of these three tasks.

Finally, vocabulary size, as measured with the PPVT, 

showed evidence for a correlation with both the SSS task and 

the Gold-MSI (Table 1; Fig. 19). These results are in line with 

findings that musicality positively influences linguistic ability 

Fig. 19 — Figure indicating positive and null correlations found between the tasks in the current study. Note. Effect sizes are 

provided for all correlations that are not null. Black lines indicate evidence for correlations, grey lines indicate evidence for 

null effects. Small effect sizes (r ¼ .10 — .30) correspond to a τb of .06 — .19. Medium effect sizes (r ¼ .30 — .50) correspond to 

τb ¼ .20 — .33 and large effects (r ≥ .50) correspond to τb ≥ .34.
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including vocabulary size (e.g., Lad�anyi et al., 2020 (review); 

Zuk et al., 2022). However, the PPVT included items 

regarding musical terminology, and as the SSS task and Gold- 

MSI were highly correlated, musical training may have influ

enced these results.

4.2.2. No effect of SSS task performance on statistical 

learning

The main goal of the present study was to investigate indi

vidual differences in SL. We hypothesized that individuals 

with better musical — specifically rhythmic — abilities would 

show better SL in the context of speech segmentation. We had 

operationalized this relationship in our preregistration as a 

direct effect of the SSS task on the WLIstructured, mediated by 

musical rhythmic ability (Fig. 5). This hypothesis was based on 

previous findings by Assaneo et al. (2019) indicating that ‘high 

synchronizers’ (i.e., participants with a higher phase-locking 

value (PLV) on the SSS task) performed better on a recognition- 

based SL task than ‘low synchronizers’ (section 1.4.). 

Furthermore, these high synchronizers showed more white 

matter integrity in the dorsal language stream (Hickok & 
Poeppel, 2007). We connected these findings to a hypothesis 

by François et al., 2012, stating that the dorsal pathway could 

be improved in musically trained individuals and that this in 

turn would benefit SL (see section 1.5). As Assaneo et al. (2019)

argued that musical training did not explain their data more 

than high/low synchronizer status, we hypothesized that in 

some individuals the dorsal stream would be organized more 

efficiently as part of the neurological substrate of innate 

musical ability.

However, the results from the current study supported the 

null hypothesis that there was no effect of SSS performance 

on the WLI, contrary to our hypothesis and the results of 

Assaneo et al. (2019). When we performed a not- 

preregistered follow-up analysis testing for this relation with 

the maxITCword (Table 3), the effect size was small and yielded 

inconclusive evidence. In both cases, we directly regressed the 

SSS PLV on a neural outcome measure of SL, hypothesizing 

this to be more sensitive to finding a relationship between 

these continuous variables than dividing the participants into 

groups. We followed up (not-preregistered) by also correlating 

the SSS PLV with our behavioral measures of SL (Table 3) and 

found evidence that there was no correlation with perfor

mance on the rating task, and inconclusive evidence in the 

direction of evidence for the null regarding the TDT (BF10 = .43; 

Table 3). Specifically, the rating task conceptually fails to 

replicate the findings by Assaneo et al. (2019), since it is an 

explicit measure of SL similar to the two-alternative forced 

choice task they employed. Finally, we performed a not- 

preregistered exploratory analysis in which we followed the 

protocol in Lizcano-Cort�es et al. (2022) to divide our partici

pants into high and low synchronizer groups as well, which 

did not alter any of these results (see Supplementary Materials 

S.2.)20. Thus, the current study provides substantial evidence 

that the SSS task is related to musical and rhythmic ability 

(see also 4.2.1.), but does not relate to individual differences in 

linguistic SL.

4.2.3. No relation between measures of rhythmic ability and 

online statistical learning

We hypothesized that rhythmic ability specifically would 

predict individual differences in SL. This hypothesis was 

based on literature showing that precise phase-locking of 

neural oscillations to auditory stimuli reflects optimal pro

cessing (e.g., Assaneo et al., 2019; Peelle & Davis, 2012; Poeppel 

& Assaneo, 2020). Furthermore, several previous studies re

ported correlations between musicality and SL (François et al., 

2012; Mandikal Vasuki et al., 2017; François & Sch€on, 2011; 

Shook et al., 2013). We predicted that efficient brain- 

stimulus phase-locking would be supported by rhythmic 

abilities relevant for both music and language processing and 

would be reflected by stronger neural entrainment during SL 

(section 1.5). Therefore, we hypothesized that rhythmic ability 

could be a mechanism supporting SL for speech 

segmentation.

In contrast to our expectation, we did not obtain evidence 

for the preregistered analyses correlating performance on the 

CA-BAT, PROMS, or Gold-MSI with the WLIstructured. Our 

Bayesian analyses indicated evidence for the absence of such 

effects for the CA-BAT and PROMS, and inconclusive evidence 

for the Gold-MSI (see Table 2 and Fig. 19). We also found null 

results in our not-preregistered follow-up analyses taking the 

maxITCword as the dependent variable, yielding evidence for 

the null hypothesis regarding the PROMS, and inconclusive 

evidence regarding the CA-BAT and Gold-MSI (Table 3). The 

sole positive correlation between any of our rhythmic ability 

measures and any SL measures that received evidence for the 

alternative hypothesis was between the PROMS and the RT 

facilitation score computed from the TDT. This is surprising, 

as the PROMS showed inconclusive evidence for a correlation 

with the SSS task — which was initially hypothesized to relate 

to SL — and the PROMS showed evidence that it was positively 

correlated with the CA-BAT only after the final sample size 

update (Fig. 16). Furthermore, performance on the PROMS was 

strongly associated with working memory capacity as 

measured by the Digit Span (section 4.2.1.). Perhaps this 

relation between the RT facilitation score and the PROMS re

flects a commonality in accurate memory for auditory se

quences more so than rhythmic abilities per se.

Taken together, the current results suggest that musical and 

rhythmic abilities do not relate to individual differences in SL, 

which contrasts with previous literature reporting correlations 

between musicality and SL However, these previous studies did 

not use speech stimuli, but instead assessed learning of regu

larities from sung languages (François et al., 2012; François & 
Sch€on, 2011), pure tones (Mandikal Vasuki et al., 2017), or 

Morse codes (Shook et al., 2013). To our knowledge, no study has 

explicitly made a connection between musical ability and SL of 

speech. Thus, a possible explanation for our results contrasting 

with these findings could be that musicality influences SL in a 

highly domain-specific way, rather than universally influ

encing all types of SL. Previous work shows that SL of speech is 

highly domain-specific (Siegelman & Frost, 2015), and particu

larly SL of speech is entrenched by prior linguistic knowledge 

(Siegelman et al., 2018).

Furthermore, while we assessed rhythmic ability through 

multiple tasks, they were all behavioral in nature and relied 
20 https://osf.io/vf4qj. 
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either on explicit judgements or sensorimotor synchroniza

tion. We had hypothesized that rhythmic ability may be 

related to SL by sharing a common neural substrate and 

leading to more efficient neural processing of auditory stimuli. 

Whereas we measured SL as ‘directly’ as possible with neural 

entrainment, this was not the case for rhythmic ability. 

Conceivably, using neural measures for both rhythmic ability 

and SL could reveal positive correlations, in line with our 

initial hypothesis. In fact, this possibility is supported by our 

recent study in infants (van der Wulp et al., 2025). In this 

study, we found that infants showing stronger neural 

entrainment to the frequency of the meter in an auditorily 

presented rhythm also showed stronger entrainment to the 

frequency of words in a structured stream identical to the one 

used in the current study. Conducting a similar study in adults 

would be a promising avenue for further research.

Another explanation for our results may be that our sam

ple of typically developed adults is sufficiently equipped to 

perform SL, and thus there is not enough variation in SL per

formance to correlate with other cognitive differences, such 

as differences in rhythmic ability. As the literature points out, 

individuals with language impairments in particular appear to 

show impaired musical and specifically rhythmic abilities (e. 

g., Boll-Avetisyan et al., 2020; Caccia & Lorusso, 2020; Fiveash 

et al., 2021; Flaugnacco et al., 2014; Huss et al., 2011; Kraus 

et al., 2014; Lad�anyi et al., 2020; Sallat & Jentschke, 2015). 

Further investigations using an individual differences 

approach on more diverse samples, including participants 

with language impairments, could shed more light on this 

possibility.

4.2.4. Working memory

We broadened our search for individual differences in SL to 

working memory capacity by including the forward Digit 

Span. As earlier studies discussed in section 1.4 did not find 

conclusive evidence regarding a relation between working 

memory and SL, the question of whether working memory 

related to SL in our sample was preregistered as exploratory. 

In line with the literature, we also did not find any conclusive 

evidence for or against a relationship between the Digit Span 

and our measures of SL. Only the correlation between the not- 

preregistered maxITCword and the Digit Span received anec

dotal evidence. Moreover, the effect size was quite small 

(Table 3). In sum, it seems that working memory has, at best, a 

small effect on SL. It is therefore unlikely that working 

memory is a driving factor of linguistic SL in the typical 

population.

4.2.5. Individual differences in SL and adult vocabulary

We administered a vocabulary test (PPVT), in order to add to 

the body of research in children indicating a relationship be

tween individual differences in SL and vocabulary size. Here, 

vocabulary size is interpreted as an outcome measure of SL, 

rather than a source of individual variability in SL (see Fig. 1). 

Our aim was to investigate whether vocabulary and SL are also 

related in adulthood, or whether this is specific to children. 

This analysis was preregistered as exploratory. Our results 

suggest that the role of SL in adult vocabulary appears to be 

modest, as we found moderate evidence for a small correla

tion between the PPVT and the preregistered WLI. However, 

this was not the case for the (not-preregistered) maxITCword, 

where the evidence was inconclusive (Table 3). We also found 

no evidence of a relationship with vocabulary size for our 

behavioral measures of SL, as indicated by evidence for the 

null on the rating task and inconclusive evidence on the TDT.

One possible explanation for the limited role of SL in pre

dicting adult vocabulary attainment may be developmental 

changes in the importance of SL as a mechanism for vocab

ulary learning. It is possible that SL plays a central role in 

vocabulary learning early in development, but that explicit 

learning mechanisms contribute more to new vocabulary 

growth by adulthood (e.g., Batterink & Neville, 2011). In addi

tion, environmental and socio-cultural factors are associated 

with adults' differential exposure to new words (e.g., educa

tional attainment, occupation, reading preferences). This 

explanation is consistent with Misyak and Christiansen 

(2012), who found that vocabulary size in adulthood was 

more related to print exposure than SL. Overall, our findings 

suggest that adult participants’ vocabulary acquisition was 

multifaceted, and not only predicted by SL ability.

5. Conclusions and theoretical implications

The current Registered Report aimed to investigate individual 

differences in SL, by replicating previous work (Assaneo et al., 

2019; Batterink & Paller, 2017) and by extending it through 

investigating relations between rhythmic and musical ability, 

as well as working memory and vocabulary size to neural and 

behavioral measures of SL. We have indeed replicated the 

main effects of Batterink and Paller (2017), showing a differ

ence between the structured and random condition in the 

neural measures of SL. Neural entrainment to the regularities 

in the structured condition increased over time, but only as 

measured through ITCword, rather than our preregistered 

metric, the WLI. Furthermore, successful learning in our 

sample was attested through our two behavioral tasks. 

Interestingly, in not-preregistered follow-up analyses we 

found that each individual's maximal ITCword robustly pre

dicted their SL performance on both behavioral tasks. In 

contrast to our preregistered expectations, we found evidence 

for the absence of an effect of the SSS task (Assaneo et al., 

2019) on SL, as well as no effects of rhythmic ability on the 

measurements of SL. This was indicated by either evidence for 

the null hypothesis or inconclusive evidence, depending on 

the task (see Tables 2 and 3). Evidence regarding working 

memory remained inconclusive. Finally, we found moderate 

evidence for a small correlation between vocabulary size and 

the WLI. However, we found evidence for the null hypothesis 

between the PPVT and one behavioral measure of SL (the 

rating task), as well as inconclusive evidence on the other (the 

TDT).

Overall, our results suggest that linguistic SL stands largely 

independently from other individual skills and aptitudes. This 
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is in line with the view put forth by Siegelman and Frost (2015), 

who argued that SL is independent of general cognitive abili

ties. Here, we extend this to other (musical, rhythmic) abilities 

beyond general intelligence and working memory. Further

more, we investigated these possible relationships using 

(behavioral and neural) measures of SL beyond those that 

(exclusively) rely on explicit recognition abilities. In contrast, 

we assessed rhythmic ability through multiple behavioral 

tasks that all relied on either explicit judgements or sensori

motor synchronization. It may be that these behavioral mea

surements are not ‘direct’ enough, as we in the same vein 

have indications that the neural entrainment measure for SL 

is more directly indexing the identification component of SL 

than behavioral measures (cf. section 1.2.).

Our data indicates that there are individual differences in 

SL, and that performance on different measures of SL is 

correlated, but these individual differences do not appear to 

strongly relate to other individual abilities in our sample. It is 

possible that this general lack of correlation could be due to 

our sample consisting of healthy, typically developed adults. 

Populations outside of typical development have been found 

to show weaker SL (e.g., Evans et al., 2009; Gabay et al., 2015; 

Lammertink et al., 2017; Newman et al., 2016; Singh et al., 

2012; Vandermosten et al., 2019; Zhang et al., 2021), which 

may lead to stronger relationships between SL and other in

dividual abilities. We speculate that in individuals with suf

ficient or typical SL abilities, their SL abilities may not relate 

to other aspects of cognition. However, if the functioning of 

the normal SL capacity breaks down or is atypical, as in 

populations with diverse types of language disorders, a 

relationship may emerge. For instance, rhythmic ability is 

found to be impaired in populations with language impair

ments (e.g., Lad�anyi et al., 2020), so the hypothesized relation 

between rhythmic abilities and SL may be present in pop

ulations outside of typical development. Inclusion of broader, 

more diverse samples in the study of individual differences 

in SL represents an important direction for future work in 

this field.
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